Maintenance of contractile performance of the heart is achieved in part by the constitutive 40% phosphorylation of myosin regulatory light chain (RLC) in sarcomeres. The importance of this extent of RLC phosphorylation for optimal cardiac performance becomes apparent when various mouse models and resultant phenotypes are compared. The absence or attenuation of RLC phosphorylation results in poor performance leading to heart failure, whereas increased RLC phosphorylation is associated with cardiac protection from stresses. Although information is limited, RLC phosphorylation appears compromised in human heart failure which is consistent with data from mouse studies. The extent of cardiac RLC phosphorylation is determined by the balanced activities of cardiac myosin light chain kinases and phosphatases, the regulatory mechanisms of which are now emerging. This review thusly focuses on kinases that may participate in phosphorylating RLC to make the substrate for cardiac myosin light chain phosphatases, in addition to providing perspectives on the family of myosin light chain phosphatases and involved signaling mechanisms. Because biochemical and physiological information about cardiac myosin light chain phosphatase is sparse, such studies represent an emerging area of investigation in health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5154923 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2016.10.004 | DOI Listing |
BMC Bioinformatics
January 2025
Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
Background: All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys).
View Article and Find Full Text PDFPhytomedicine
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China. Electronic address:
Background: Dairy mastitis, a prevalent condition affecting dairy cattle, represents a significant challenge to both animal welfare and the quality of dairy products. However, current treatment options remain limited. Stigmasterol (ST) is a bioactive component of Prunella vulgaris L.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Department of Oral and Maxillofacial Surgery and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
This study examines the effects of pulsed wave photobiomodulation (pwPBM) on the osteogenic differentiation of stem cells from the apical papilla (SCAP). Using 810 nm near-infrared (NIR) light with 300 Hz pulses and a 30% duty cycle, pwPBM was applied at a total energy density of 750 mJ/cm. Osteogenesis was evaluated through both in vitro and in vivo analyses.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
Background: There is no unified prognostic scoring system for light chain cardiac amyloidosis (AL-CA), particularly stage IIIb AL-CA. This study aimed to use invasive haemodynamic information to investigate markers that can more accurately evaluate the prognosis of patients with stage IIIb AL-CA.
Methods: In this retrospective cohort study, we conducted invasive haemodynamic measurements concurrently with myocardial biopsies to diagnose AL-CA.
Zhongguo Zhong Yao Za Zhi
December 2024
School of Traditional Chinese Medicine, Binzhou Medical College Yantai 264003, China Institute of Basic Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences Beijing 100091, China.
This article explored the specific mechanism by which ginsenoside Rg_1 regulates cellular autophagy to attenuate hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes through the microRNA155(miR-155)/neurogenic gene Notch homologous protein 1(Notch1)/hairy and enhancer of split 1(Hes1) pathway. An HL-1 cell model with H/R injury was constructed, and ginsenoside Rg_1 and/or Notch1 inhibitor DAPT and miR-155 mimics were used to treat cells. Cell counting kit(CCK)-8 was used to detect the relative viability of HL-1 cells with H/R injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!