Baicalein attenuates α-synuclein aggregation, inflammasome activation and autophagy in the MPP-treated nigrostriatal dopaminergic system in vivo.

J Ethnopharmacol

Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Pharmacy, Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan. Electronic address:

Published: December 2016

Ethnopharmacological Relevance: Neuroinflammation, oxidative stress, and protein aggregation form a vicious cycle in the pathophysiology of Parkinson's disease (PD); activated microglia is the main location of neuroinflammation. A Chinese medicine book, "Shanghan Lun", known as the "Treatises on Cold damage Diseases" has suggested that Scutellaria baicalensis Georgi is effective in treating CNS diseases. The anti-inflammatory mechanisms of baicalein, a phenolic flavonoid in the dried root of Scutellaria baicalensis Georgi, remain to be explored.

Aim Of The Study: The neuroprotective mechanisms of baicalein involving α-synuclein aggregation, inflammasome activation, and programmed cell death were investigated in the nigrostriatal dopaminergic system of rat brain in vivo.

Materials And Methods: Intranigral infusion of 1-methyl-4-phenylpyridinium (MPP, a Parkinsonian neurotoxin) was performed on anesthetized Sprague-Dawley rats. Baicalein was daily administered via intraperitoneal injection. Striatal dopamine levels were measured using high performance liquid chromatography coupled with electrochemical detection. Cellular signalings were measured by Western blot assay, immunofluorescent staining assay and enzyme-linked immunosorbent assay.

Results: Systemic administration of baicalein attenuated MPP-induced reductions in striatal dopamine content and tyrosine hydroxylase (a biomarker of dopaminergic neurons) in the infused substantia nigra (SN). Furthermore, MPP-induced elevations in α-synuclein aggregates (a pathological hallmark of PD), ED-1 (a biomarker of activated microglia), activated caspase-1 (a proinflammatory caspase), IL-1β and cathepsin B (a cysteine lysosomal protease) in the infused SN were attenuated in the baicalein-treated rats. Moreover, intense immunoreactivities of caspase 1 and cathepsin B were co-localized with that of ED-1 in the MPP-infused SN. At the same time, baicalein inhibited MPP-induced increases in active caspases 9 and 12 (biomarkers of apoptosis) as well as LC3-II levels (a biomarker of autophagy) in the rat nigrostriatal dopaminergic system.

Conclusion: Our in vivo study showed that baicalein possesses anti-inflammatory activities by inhibiting α-synuclein aggregation, inflammasome activation and cathepsin B production in the MPP-infused SN. Moreover, baicalein is of therapeutic significance because it inhibits MPP-induced apoptosis and autophagy in the nigrostriatal dopaminergic system of rat brain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2016.10.040DOI Listing

Publication Analysis

Top Keywords

nigrostriatal dopaminergic
16
α-synuclein aggregation
12
aggregation inflammasome
12
inflammasome activation
12
dopaminergic system
12
baicalein
8
activated microglia
8
scutellaria baicalensis
8
baicalensis georgi
8
mechanisms baicalein
8

Similar Publications

Establishing functionally segregated dopaminergic circuits.

Trends Neurosci

January 2025

Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Despite accounting for only ~0.001% of all neurons in the human brain, midbrain dopaminergic neurons control numerous behaviors and are associated with many neuropsychiatric disorders that affect our physical and mental health. Dopaminergic neurons form various anatomically and functionally segregated pathways.

View Article and Find Full Text PDF

Dopamine receptors (DRs) are G-protein-coupled receptors (GPCRs) found in the central nervous system (CNS). DRs are essential for mediating various downstream signaling cascades and play a critical role in regulating the dopaminergic nigrostriatal pathway, which is involved in motor control. Recently, mutations in DRD2 (WT), p.

View Article and Find Full Text PDF

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Asymmetric dopaminergic degeneration of the striatum is a characteristic feature of Parkinson's disease, associated with right-left asymmetry in motor function. As such, studying asymmetry provides insights into progressive neurodegeneration between cerebral hemispheres. Given the impact of Lewy pathology on various neurotransmitter systems beyond the dopaminergic, it may be that other neuronal systems in the predominantly affected hemisphere are similarly affected.

View Article and Find Full Text PDF

Introduction: Parkinson's disease (PD) is characterized by progressive neurodegeneration within the nigrostriatum, leading to motor dysfunction. This systematic review aimed to summarize the effects of various exercise training regimens on protein or gene expression within the nigrostriatum and their role in neuroprotection and motor function improvement in animal models of Parkinson's disease (PD).

Methods: PubMed, EMBASE, and Web of Science were searched up to June 2024 and included sixteen studies that adhere to PRISMA guidelines and CAMARADES checklist scores ranging from 4 to 6 out of 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!