The arc of Mass Spectrometry Exchange Formats is long, but it bends toward HDF5.

Mass Spectrom Rev

Research Division, Weill Cornell Medicine in Qatar, Doha, State of Qatar.

Published: September 2017

The evolution of data exchange in Mass Spectrometry spans decades and has ranged from human-readable text files representing individual scans or collections thereof (McDonald et al., 2004) through the official standard XML-based (Harold, Means, & Udemadu, 2005) data interchange standard (Deutsch, 2012), to increasingly compressed (Teleman et al., 2014) variants of this standard sometimes requiring purely binary adjunct files (Römpp et al., 2011). While the desire to maintain even partial human readability is understandable, the inherent mismatch between XML's textual and irregular format relative to the numeric and highly regular nature of actual spectral data, along with the explosive growth in dataset scales and the resulting need for efficient (binary and indexed) access has led to a phenomenon referred to as "technical drift" (Davis, 2013). While the drift is being continuously corrected using adjunct formats, compression schemes, and programs (Röst et al., 2015), we propose that the future of Mass Spectrometry Exchange Formats lies in the continued reliance and development of the PSI-MS (Mayer et al., 2014) controlled vocabulary, along with an expedited shift to an alternative, thriving and well-supported ecosystem for scientific data-exchange, storage, and access in binary form, namely that of HDF5 (Koranne, 2011). Indeed, pioneering efforts to leverage this universal, binary, and hierarchical data-format have already been published (Wilhelm et al., 2012; Rübel et al., 2013) though they have under-utilized self-description, a key property shared by HDF5 and XML. We demonstrate that a straightforward usage of plain ("vanilla") HDF5 yields immediate returns including, but not limited to, highly efficient data access, platform independent data viewers, a variety of libraries (Collette, 2014) for data retrieval and manipulation in many programming languages and remote data access through comprehensive RESTful data-servers. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:668-673, 2017.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6088231PMC
http://dx.doi.org/10.1002/mas.21522DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
12
spectrometry exchange
8
exchange formats
8
data access
8
data
7
arc mass
4
formats long
4
long bends
4
hdf5
4
bends hdf5
4

Similar Publications

Introduction/objectives: Sjogren's syndrome (SS) is a chronic inflammatory and difficult-to-treat autoimmune disease. Timosaponin AIII (TAIII), a plant-derived steroidal saponin, effectively inhibits cell proliferation, induces apoptosis, and exhibits anti-inflammatory properties. This study explored the mechanisms of action of TAIII in SS treatment by studying gut microbiota and short-chain fatty acids (SCFAs) using fecal metabolomics.

View Article and Find Full Text PDF

Cells are subjected to dynamic mechanical environments which impart forces and induce cellular responses. In age-related conditions like pulmonary fibrosis, there is both an increase in tissue stiffness and an accumulation of senescent cells. While senescent cells produce a senescence-associated secretory phenotype (SASP), the impact of physical stimuli on both cellular senescence and the SASP is not well understood.

View Article and Find Full Text PDF

Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.

View Article and Find Full Text PDF

New Numerical Inversion Method to Improve the Spatial Accuracy of Elemental Imaging for LA-ICP-MS.

Anal Chem

January 2025

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, PR China.

The elemental imaging of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) provides spatial information on elements and therefore can further investigate the growth or evolution processes of an analyte. However, the accurate determination of spatial information is limited by the decoupling between the elemental distribution and mass spectrometry signals. This phenomenon, which is more distinct when high-diffusion ablation cells are used, arises from the overlap of ablation and the transport dispersion of aerosols.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!