Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS). We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded. From the resulting pattern of errors, we found that the animal's estimate of target direction was consistent with a weighted circular-mean strategy-close to the optimal decoding strategy given the ICMS encoding. These results support our previous finding that animals can learn to use this artificial sensory feedback in an efficient and naturalistic manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TOH.2016.2616311 | DOI Listing |
Unlabelled: Intracortical microstimulation (ICMS) is known to affect distant neurons transynaptically, yet the extent to which ICMS pulses delivered in one cortical area modulate neurons in other cortical areas remains largely unknown. Here we assessed how the individual pulses of multi-channel ICMS trains delivered in the upper extremity representation of the macaque primary somatosensory area (S1) modulate neuron firing in the primary motor cortex (M1) and in the ventral premotor cortex (PMv). S1-ICMS pulses modulated the majority of units recorded both in the M1 upper extremity representation and in PMv, producing more inhibition than excitation.
View Article and Find Full Text PDFbioRxiv
July 2023
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL.
When we interact with objects, we rely on signals from the hand that convey information about the object and our interaction with it. A basic feature of these interactions, the locations of contacts between the hand and object, is often only available via the sense of touch. Information about locations of contact between a brain-controlled bionic hand and an object can be signaled via intracortical microstimulation (ICMS) of somatosensory cortex (S1), which evokes touch sensations that are localized to a specific patch of skin.
View Article and Find Full Text PDFbioRxiv
July 2023
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL.
Front Neurosci
June 2022
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States.
Intracortical microstimulation (ICMS) has shown promise in restoring quality of life to patients suffering from paralysis, specifically when used in the primary somatosensory cortex (S1). However, these benefits can be hampered by long-term degradation of electrode performance due to the brain's foreign body response. Advances in microfabrication techniques have allowed for the development of neuroprostheses with subcellular electrodes, which are characterized by greater versatility and a less detrimental immune response during chronic use.
View Article and Find Full Text PDFIEEE Trans Haptics
October 2017
Naturalistic control of brain-machine interfaces will require artificial proprioception, potentially delivered via intracortical microstimulation (ICMS). We have previously shown that multi-channel ICMS can guide a monkey reaching to unseen targets in a planar workspace. Here, we expand on that work, asking how ICMS is decoded into target angle and distance by analyzing the performance of a monkey when ICMS feedback was degraded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!