The performance of HPMC matrix tablets using various agglomeration manufacturing processes.

Drug Dev Ind Pharm

a KRKA, d.d., Novo mesto, Pharmaceutical R&D and Production , Slovenia.

Published: February 2017

Context: The flow and compaction properties of a compaction mixture or powder and the drug-release profile of final tablets are important critical quality attributes (CQAs) that have an impact on the overall performance of hydrophilic matrix tablets. The selection of granulation method can importantly affect these CQAs.

Objective: This study investigates various agglomeration methods of sustained-release formulation using HPMC K4M as a release polymer with various wet- and dry-granulation techniques.

Materials And Methods: Flow properties were determined using flow time, angle of response, and the Carr index. Compaction properties were evaluated using "out of die" Heckel model. Release of carvedilol was tested as 12-h drug-dissolution profile.

Results And Conclusion: Compression mixtures made using the wet-granulation method exhibit better flow and compression properties than compression mixtures made using the dry-granulation method. The direct compression method proved to be the least appropriate manufacturing method because the compression mixture has very poor flow and the lowest compressibility/compactibility index. The choice of granulation technique significantly influences the swelling behavior and drug-dissolution profile of the final matrix tablets, also resulting in dissimilar release profiles. The choice of granulation method has the greatest influence on the drug-release profile. The direct compression method provides tablets with the fastest drug-release profile, followed by the dry-granulation and wet-granulation methods. The particle size of granules and porosity of tablets play an important role, contributing to differences in drug-release profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03639045.2016.1249374DOI Listing

Publication Analysis

Top Keywords

matrix tablets
12
drug-release profile
12
compaction properties
8
profile final
8
granulation method
8
compression mixtures
8
direct compression
8
compression method
8
choice granulation
8
method
7

Similar Publications

Diabetes is a growing global health crisis that requires effective therapeutic strategies to optimize treatment outcomes. This study aims to address this challenge by developing and characterizing extended-release polymeric matrix tablets containing metformin hydrochloride (M-HCl), a first-line treatment for type 2 diabetes, and honokiol (HNK), a bioactive compound with potential therapeutic benefits. The objective is to enhance glycemic control and overall therapeutic outcomes through an innovative dual-drug delivery system.

View Article and Find Full Text PDF

A rapid, facile, and green spectrofluorometric method was developed for the concurrent precise estimation of itraconazole and ibuprofen. The developed method involved the use of Tween-80 micelle as a green sample matrix for the efficient assay of the analytes of interest. Besides the greenness of Tween-80, it significantly enhanced the native fluorescence of itraconazole by about 450%.

View Article and Find Full Text PDF

Utilising terahertz pulsed imaging to analyse the anhydrous-to-hydrate transformation of excipients during immediate release film coating hydration.

Int J Pharm

December 2024

Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK. Electronic address:

Pharmaceutical tablets are routinely film-coated to improve appearance, reduce medication errors and enhance storage stability. Terahertz pulsed imaging (TPI) can be utilised to study the liquid penetration into the porous tablet matrix in real time. Using polymer-coated flat-faced tablets with anhydrous lactose or mannitol, we show that when the tablet matrix contains anhydrous material, the anhydrous form transforms to the solid-state hydrate form in the tablet core while the immediate release coating dissolves.

View Article and Find Full Text PDF

Citric acid is more effective than sodium thiosulfate in chelating calcium in a dissolution model of calcinosis.

Sci Rep

December 2024

Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester and Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.

Calcinosis cutis affects 20-40% of patients with systemic sclerosis. This study tests the hypothesis that calcium-chelating polycarboxylic acids can induce calcium dissolution without skin toxicity or irritancy. We compared citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to sodium thiosulfate (STS) for their ability to chelate calcium in vitro using a pharmaceutical dissolution model of calcinosis (hydroxyapatite (HAp) tablet), prior to evaluation of toxicity and irritancy in 2D in vitro skin models.

View Article and Find Full Text PDF

Rapid Sintering Method for Preparing Matrix-Matched Reference Materials in LA-MC-ICP-MS - An Example of Hafnium.

Anal Chem

December 2024

State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.

Matrix effects can significantly bias Hf isotopic ratios in situ Hf isotope analyses using laser ablation (LA-) multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS), necessitating the use of matrix-matched reference materials for accurate microanalysis. This work introduces a novel fast hot-pressing (FHP) sintering method to produce such reference materials efficiently for in situ analysis. By optimizing sintering temperatures, FHP technology enables the rapid preparation of in situ analysis reference materials with dense structures and homogeneous Hf isotopic compositions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!