The time-dependent WKB approximation for a coherent state is expanded to third order around a guiding real trajectory, allowing for the novel treatment of nonlinearity in its semiclassical dynamics, which is generally present in all physical systems far from the classical regime. The result is a closed-form solution consisting of a linear combination of Airy functions and their derivatives multiplied by an exponential. The expression's ability to capture nonlinearity is demonstrated by examining the autocorrelation of initial coherent states in anharmonic systems with few to many contributing periodic orbits. Its accuracy is compared to the quadratic expansion and found to be superior in regimes of ℏ where the curvature begins to be significant, as expected. Moreover, the expression is shown to be a real-trajectory uniformization over two coalescing saddle points that are emblematic of significant curvature. This extends real-trajectory time-dependent wave-packet semiclassical methods to highly anharmonic systems for the first time and establishes their regime of validity.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.032211DOI Listing

Publication Analysis

Top Keywords

anharmonic systems
8
semiclassical treatment
4
treatment quantum
4
quantum propagation
4
propagation nonlinear
4
nonlinear classical
4
classical dynamics
4
dynamics third-order
4
third-order thawed
4
thawed gaussian
4

Similar Publications

The development of accurate yet fast quantum mechanical methods to calculate the anharmonic vibrational spectra of large molecules is one of the major goals of ongoing developments in this field. This study extensively explores and validates a hybrid electronic basis set approach for anharmonic vibrational calculations, where the molecule is segregated into different computational layers, and such layers are then treated with different levels of electronic basis sets. Following the system-bath model, the atoms corresponding to the active sites are treated in more accurate but computationally slower, large basis set and the rest of the atoms in less accurate but computationally faster, small basis set to construct the anharmonic hybrid potential energy surface (PES).

View Article and Find Full Text PDF

We propose an alternative scheme for implementing the antibunching effects of two-magnon bundle in a hybrid ferromagnet-superconductor system, where a magnon mode from the yttrium iron garnet (YIG) sphere interacts with a three-level superconducting qubit via photon virtual excitation in the microwave cavity. With the help of the qubit driving from the ground state to the excited state, the cascaded emission of magnon occurs and then the two-magnon bundle is formed. By analyzing the ordinary and generalized second-order correlation functions, it is found that the antibunched two-magnon bundle could be achieved via properly choosing the system parameters, which is originated from the anharmonicity of dressed energy levels induced by magnon-qubit couplings.

View Article and Find Full Text PDF

The knowledge of diffusion mechanisms in materials is crucial for predicting their high-temperature performance and stability, yet accurately capturing the underlying physics like thermal effects remains challenging. In particular, the origin of the experimentally observed non-Arrhenius diffusion behavior has remained elusive, largely due to the lack of effective computational tools. Here we propose an efficient ab initio framework to compute the Gibbs energy of the transition state in vacancy-mediated diffusion including the relevant thermal excitations at the density-functional-theory level.

View Article and Find Full Text PDF

In this work, we investigate anharmonic vibrational polaritons formed due to strong light-matter interactions in an optical cavity between radiation modes and anharmonic vibrations beyond the long-wavelength limit. We introduce a conceptually simple description of light-matter interactions, where spatially localized cavity radiation modes couple to localized vibrations. Within this theoretical framework, we employ self-consistent phonon theory and vibrational dynamical mean-field theory to efficiently simulate momentum-resolved vibrational-polariton spectra, including effects of anharmonicity.

View Article and Find Full Text PDF

Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!