Multiphase flows in porous medium systems are typically modeled at the macroscale by applying the principles of continuum mechanics to develop models that describe the behavior of averaged quantities, such as fluid pressure and saturation. These models require closure relations to produce solvable forms. One of these required closure relations is an expression relating the capillary pressure to fluid saturation and, in some cases, other topological invariants such as interfacial area and the Euler characteristic (or average Gaussian curvature). The forms that are used in traditional models, which typically consider only the relationship between capillary pressure and saturation, are hysteretic. An unresolved question is whether the inclusion of additional morphological and topological measures can lead to a nonhysteretic closure relation. Relying on the lattice Boltzmann (LB) method, we develop an approach to investigate equilibrium states for a two-fluid-phase porous medium system, which includes disconnected nonwetting phase features. A set of simulations are performed within a random close pack of 1964 spheres to produce a total of 42 908 distinct equilibrium configurations. This information is evaluated using generalized additive models to quantitatively assess the degree to which functional relationships can explain the behavior of the equilibrium data. The variance of various model estimates is computed, and we conclude that, except for the limiting behavior close to a single fluid regime, capillary pressure can be expressed as a deterministic and nonhysteretic function of fluid saturation, interfacial area between the fluid phases, and the Euler characteristic. To our knowledge, this work is unique in the methods employed, the size of the data set, the resolution in space and time, the true equilibrium nature of the data, the parametrizations investigated, and the broad set of functions examined. The conclusion of essentially nonhysteretic behavior provides support for an evolving class of two-fluid-phase flow in porous medium systems models.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.033102DOI Listing

Publication Analysis

Top Keywords

capillary pressure
16
porous medium
16
fluid saturation
12
interfacial area
12
medium systems
12
relationship capillary
8
pressure fluid
8
saturation interfacial
8
two-fluid-phase porous
8
pressure saturation
8

Similar Publications

Aims: Left ventricular (LV) diastolic dysfunction and heart failure with preserved ejection fraction (HFpEF) are common cardiac complications of patients with systemic sclerosis (SSc). Exercise stress echocardiography is often used in symptomatic patients with SSc to detect abnormal increases in pulmonary pressures during exercise, but the pathophysiologic and prognostic significance of exercise stress echocardiography to assess the presence of HFpEF in these patients is unclear.

Methods And Results: Patients with SSc (n=140) underwent ergometry exercise stress echocardiography with simultaneous expired gas analysis.

View Article and Find Full Text PDF

Fluids are given with the purpose of increasing cardiac output (CO), but approximately only 50% of critically ill patients are fluid responders. Since the effect of a fluid bolus is time-sensitive, it diminuish within few hours, following the initial fluid resuscitation. Several functional hemodynamic tests (FHTs), consisting of maneuvers affecting heart-lung interactions, have been conceived to discriminate fluid responders from non-responders.

View Article and Find Full Text PDF

Objective: To prospectively compare the shock index (SI) in a population of healthy cats with a population of cats presenting to the emergency room (ER) deemed to be in a state of shock.

Design: Prospective cohort study of cats.

Setting: University teaching hospital.

View Article and Find Full Text PDF

Validity and Accuracy of the Derived Left Ventricular End-Diastolic Pressure in Impella 5.5.

Circ Heart Fail

January 2025

Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Germany. (R.P., J.S.H., D.B., A.S.M., M.H., A.Z., G.D., J.D.S., A.F.P., A.W., A.R., B.S.).

Background: Consensus regarding on-support evaluation and weaning concepts from Impella 5.5 support is scarce. The derived left ventricular end-diastolic pressure (dLVEDP), estimated by device algorithms, is a rarely reported tool for monitoring the weaning process.

View Article and Find Full Text PDF

Influence of wettability on water retention curves in unconsolidated porous media.

J Contam Hydrol

January 2025

Center of Innovation for Flow through Porous Media (COIFPM), Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY, USA.

Controlled laboratory experiments were carried out using the hanging column method. Prior to the experiments, three uniform silica sands, which were originally water-wet, were aged in contact with crude oil until they were moderately oil-wet. Five fractionally wet sands were obtained by mixing the water-wet sands with oil-wet sands containing 25, 50 and 75 vol% oil-wet sands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!