Surfactant effects on the coalescence of a drop in a Hele-Shaw cell.

Phys Rev E

Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom.

Published: September 2016

In this work the coalescence of an aqueous drop with a flat aqueous-organic interface was investigated in a thin gap Hele-Shaw cell. Different concentrations of a nonionic surfactant (Span 80) dissolved in the organic phase were studied. We present experimental results on the velocity field inside a coalescing droplet in the presence of surfactants. The evolution of the neck between the drop and the interface was studied with high-speed imaging. It was found that the time evolution of the neck at the initial stages of coalescence follows a linear trend, which suggests that the local surfactant concentration at the neck region for this stage of coalescence can be considered quasiconstant in time. This neck expansion can be described by the linear law developed for pure systems when the surfactant concentration at the neck is assumed higher than in the bulk solution. In addition, velocity and vorticity fields were computed inside the coalescing droplet and the bulk homophase using a high-speed shadowgraphy technique. The significant wall effects in the Hele-Shaw cell in the transverse axis cause the two vertical velocity components towards the singularity rupture point, from the drop and from the bulk homophase, to be of the same order of magnitude. This movement together with the neck expansion creates two pairs of counteracting vortices in the drop and in the bulk phase. The neck velocity is the average of the advection velocities of the two counteracting vortex pairs on each side of the neck. The presence of the surfactant slows down the dynamics of the coalescence, affects the propagation direction of the pair of vortices in the bulk phase, and reduces their size faster compared to the system without surfactant.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.033101DOI Listing

Publication Analysis

Top Keywords

hele-shaw cell
12
inside coalescing
8
coalescing droplet
8
neck
8
evolution neck
8
surfactant concentration
8
concentration neck
8
neck expansion
8
bulk homophase
8
drop bulk
8

Similar Publications

Article Synopsis
  • The study examines how compressed nitrogen gas interacts with a complex fluid, magnesium lithium phyllosilicate (MLPS), through phenomena known as viscous fingering (VF) and elastic fracture (EFr) in a controlled environment designed as a Hele-Shaw cell.
  • Viscous fingering primarily results in finger-like structures where gas invasion affects a confined region, with a notable velocity distribution featuring a larger component parallel to the growth direction; conversely, elastic fracture entails a larger disturbed area with a more complex velocity distribution around the bubble.
  • The research emphasizes the differences in the velocity fields of VF and EFr, proposing quantitative indicators to measure characteristics such as the affected area ratio and velocity
View Article and Find Full Text PDF

This study uses numerical methods (ANSYS-Fluent) to investigate the viscous fingering of the displaced phase as a shear-thinning fluid in the classic three-dimensional Hele-Shaw cell. Comparing the behavior of fingerings with different properties on the upper and lower surfaces of a three-dimensional model, it was found that when the upper and lower surfaces are walls, under the combined action of moving contact lines and Saffman-Taylor instability, fingering splitting occurs at the tip, resulting in the appearance of two fingers at the interface. In addition, we have found that interfacial tension has a suppressive effect on short waves.

View Article and Find Full Text PDF

Interaction between gas channels in water-saturated sands.

Phys Rev E

August 2024

Laboratoire de Physique, École Normale Supérieure de Lyon, Université de Lyon-CNRS, 46 Allée d'Italie, 69364 Lyon Cedex 7, France.

This work investigates the interaction between gas channels in a vertical Hele-Shaw cell when air is injected simultaneously from two points at a constant flow rate. Unlike single-injection experiments, this dual-point system induces the formation of numerous bubbles, thereby intensifying the interactions between air channels. We use an image analysis technique for tracking motion in the granular bed to define a flow density parameter throughout the cell.

View Article and Find Full Text PDF

Stability Transition in Gap Expansion-Driven Interfacial Flow.

Phys Rev Lett

July 2024

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, People's Republic of China.

We investigate interfacial instability in a lifting Hele-Shaw cell by experiments and theory. We characterize the unexplored transition from stable to unstable patterns under a wide range of controlling parameters. Surprisingly, we find that the perturbation growth rate-based criterion for the onset of instability from linear stability theory is too strict by over 3 orders of magnitude.

View Article and Find Full Text PDF

Periodic Precipitation in a Confined Liquid Layer.

J Phys Chem Lett

May 2024

Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111, Hungary.

Pattern formation is a ubiquitous phenomenon in animate and inanimate systems generated by mass transport and reaction of chemical species. The Liesegang phenomenon is a self-organized periodic precipitation pattern always studied in porous media such as hydrogels and aerogels for over a century. The primary consideration of applying the porous media is to prevent the disintegration of the precipitation structures due to the sedimentation of the precipitate and induced fluid flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!