The nuclear plus interference scattering (NIS) effect on the stopping power of hot dense beryllium (Be) plasma for multi-MeV protons is theoretically investigated by using the generalized Brown-Preston-Singleton (BPS) model, in which a NIS term is taken into account. The analytical formula of the NIS term is detailedly derived. By using this formula, the density and temperature dependence of the NIS effect is numerically studied, and the results show that the NIS effect becomes more and more important with increasing the plasma temperature or density. Different from the cases of protons traveling through the deuterium-tritium plasmas, for a Be plasma, a prominent oscillation valley structure is observed in the NIS term when the proton's energy is close to E_{p}=7MeV. Furthermore, the penetration distance is remarkably reduced when the NIS term is considered.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.033205DOI Listing

Publication Analysis

Top Keywords

nis term
16
multi-mev protons
8
nis
7
nuclear-plus-interference-scattering energy
4
energy deposition
4
deposition multi-mev
4
protons dense
4
plasma
4
dense plasma
4
plasma nuclear
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!