Effect of relative humidity on the peeling behavior of a thin film on a rigid substrate.

Phys Rev E

Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China.

Published: September 2016

Inspired by gecko adhesion in humid environments, a modified Kendall's model is established in order to investigate the effect of relative humidity on the interfacial peeling behavior of a thin film adhering on a rigid substrate. When the humidity is less than 90%, a monolayer of water molecules adsorbed on the substrate surface induces a strong disjoining pressure at the interface. As a result, the steady-state peel-off force between the thin film and substrate is significantly enhanced. When the humidity is greater than 90%, water molecules condense into water droplets. Four different peeling models are established on this occasion, depending on the surface wettability of the film and substrate. It is found that the steady-state peel-off force is influenced by the water meniscus in a complicated manner, which is either enhanced or reduced by the water capillarity comparing to that predicted by the classical Kendall's model, i.e., a dry peeling model. It should be noted that, at the vicinity of the wetting transition, the peel-off force of the four models can be reduced to an identical one, which means the four peeling models can transit from one to another continuously. The present model, as an extension of the classical Kendall's one, should be useful not only for understanding gecko adhesion in humid environments, but also for analyzing interface behaviors of a film-substrate system in real applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.032801DOI Listing

Publication Analysis

Top Keywords

thin film
12
peel-off force
12
relative humidity
8
peeling behavior
8
behavior thin
8
rigid substrate
8
gecko adhesion
8
adhesion humid
8
humid environments
8
kendall's model
8

Similar Publications

Modification of the Se/MoO Rear Interface for Efficient Wide-Band-Gap Trigonal Selenium Solar Cells.

ACS Appl Mater Interfaces

January 2025

Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.

Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.

View Article and Find Full Text PDF

Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.

View Article and Find Full Text PDF

Tailoring selenization dynamics: How heating rate manipulates nucleation and growth boosts efficiency in kesterite solar cells.

J Chem Phys

January 2025

Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.

Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.

View Article and Find Full Text PDF

Aerosol CVD Carbon Nanotube Thin Films: From Synthesis to Advanced Applications: A Comprehensive Review.

Adv Mater

January 2025

Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.

Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!