Multiscale approach to equilibrating model polymer melts.

Phys Rev E

Univ Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique and Centre Blaise Pascal, F-69342 Lyon, France.

Published: September 2016

We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed to be computationally effective at each scale. Density fluctuations in the melt structure above the tube scale are minimized through a Monte Carlo simulated annealing of a lattice polymer model. Subsequently the melt structure below the tube scale is equilibrated via the Rouse dynamics of a force-capped Kremer-Grest model that allows chains to partially interpenetrate. Finally the Kremer-Grest force field is introduced to freeze the topological state and enforce correct monomer packing. We generate 15 melts of 500 chains of 10.000 beads for varying chain stiffness as well as a number of melts with 1.000 chains of 15.000 monomers. To validate the equilibration process we study the time evolution of bulk, collective, and single-chain observables at the monomeric, mesoscopic, and macroscopic length scales. Extension of the present method to longer, branched, or polydisperse chains, and/or larger system sizes is straightforward.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.032502DOI Listing

Publication Analysis

Top Keywords

melt structure
12
structure tube
12
tube scale
12
model polymer
8
polymer melts
8
scale
5
multiscale approach
4
approach equilibrating
4
model
4
equilibrating model
4

Similar Publications

Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network.

ACS Macro Lett

January 2025

Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.

Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.

View Article and Find Full Text PDF

Background: In infertility clinics, long-time preserving high-quality spermatozoa is a challenging problem.

Objective: The present study aimed to prolong preserving of the human spermatozoa by adding pentoxifylline (PT) and L-carnitine (LC) without using high-cost freezing techniques.

Materials And Methods: In this experimental study, semen samples of 26 normozoospermia men aged between 28-34 yr, were firstly prepared using the swim-up technique, and each sample was divided into the following 3 aliquots: untreated control group, the LC, and PT-treated groups.

View Article and Find Full Text PDF

In this research, fully biobased composites consisting of poly(butylene 2,5-furandicarboxylate) (PBF) and cellulose nanocrystals (CNC) were successfully prepared through a common solution and casting method. The influence of CNC on the crystallization behavior, mechanical property, and hydrophilicity of PBF was systematically investigated. Under different crystallization processes, the crystallization of PBF was obviously promoted by CNC as a biobased nucleating agent.

View Article and Find Full Text PDF

In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (AlO) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF.

View Article and Find Full Text PDF

We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!