Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.94.032909 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!