Direct observation of redox reactions in Candida parapsilosis ATCC 7330 by Confocal microscopic studies.

Sci Rep

Laboratory of Bioorganic Chemistry, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.

Published: October 2016

Confocal microscopic studies with the resting cells of yeast, Candida parapsilosis ATCC 7330, a reportedly versatile biocatalyst for redox enzyme mediated preparation of optically pure secondary alcohols in high optical purities [enantiomeric excess (ee) up to >99%] and yields, revealed that the yeast cells had large vacuoles under the experimental conditions studied where the redox reaction takes place. A novel fluorescence method was developed using 1-(6-methoxynaphthalen-2-yl)ethanol to track the site of biotransformation within the cells. This alcohol, itself non-fluorescent, gets oxidized to produce a fluorescent ketone, 1-(6-methoxynaphthalen-2-yl)ethanone. Kinetic studies showed that the reaction occurs spontaneously and the products get released out of the cells in less time [5 mins]. The biotransformation was validated using HPLC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064409PMC
http://dx.doi.org/10.1038/srep34344DOI Listing

Publication Analysis

Top Keywords

candida parapsilosis
8
parapsilosis atcc
8
atcc 7330
8
confocal microscopic
8
microscopic studies
8
direct observation
4
observation redox
4
redox reactions
4
reactions candida
4
7330 confocal
4

Similar Publications

Patients with selective IgA deficiency could have various clinical presentations ranging from asymptomatic to severe respiratory or gastrointestinal tract infection, as well as autoimmune disease and allergic reactions. Selective IgA deficiency is relatively common in Caucasians, but it is rare in the Asian population, meaning it could be easily missed in the clinic. In this study, we report a 26-year-old man with a history of asthma and nephrotic syndrome.

View Article and Find Full Text PDF

Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to qualitative screening test using Nile-red dye.

View Article and Find Full Text PDF

Pathogenic Aspergillus spp. and Candida spp. in coastal waters from southern Brazil: an one health approach.

Braz J Microbiol

January 2025

Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil.

Aspergillus and Candida are ubiquitous fungi included in the group of high priority in the World Health Organization list of fungal pathogens. They are found in various ecosystems and the environmental role in increasing the resistance to antifungals has been shown. Thus, we aimed to determine the occurrence of Aspergillus spp.

View Article and Find Full Text PDF

Background: Vulvovaginal candidiasis and urinary tract infections caused by are common diseases. While the most common causative agent is , other species, such as non-, can also be responsible. Susceptibility to antifungal drugs varies among species, but there is very limited information available from Vietnam.

View Article and Find Full Text PDF

Background: Infections with fluconazole-resistant Candida parapsilosis have been increasing in Israeli hospitals with unclear implications for patient outcomes.

Objectives: To determine the frequency, mechanisms, molecular epidemiology, and outcomes of azole-resistant C. parapsilosis bloodstream infections in four hospitals in Israel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!