For cancer gene therapy, a safe and high-efficient gene carrier is a must. To resolve the contradiction between gene transfection efficiency and cytotoxicity, many polymers with complex topological structures have been synthesized, although their synthesis processes and structure control are difficult as well as the high molecular weight also bring high cytotoxicity. We proposed an alternative strategy that uses supramolecular inclusion to construct the aggregate from the small molecules for gene delivery, and to further explore the relationship between the topological assembly structure and their ability to deliver gene. Herein, PEI-1.8k-conjugating β-CD through 6-hydroxyl (PEI-6-CD) and 2-hydroxyl (PEI-2-CD) have been synthesized respectively and then assembled with diferrocene (Fc)-ended polyethylene glycol (PEG-Fc). The obtained aggregates were then used to deliver MMP-9 shRNA plasmid for MCF-7 cancer therapy. It was found that the higher gene transfection efficiency can be obtained by selecting PEI-2-CD as the host and tuning the host/guest molar ratios. With the rational modulation of supramolecular architectures, the aggregate played the functions similar to macromolecules which exhibit higher transfection efficiency than PEI-25k, but show much lower cytotoxicity because of the nature of small/low molecules. In vitro and in vivo assays confirmed that the aggregate could deliver MMP-9 shRNA plasmid effectively into MCF-7 cells and then downregulate MMP-9 expression, which induced the significant MCF-7 cell apoptosis, as well inhibit MCF-7 tumor growth with low toxicity. The supramolecular aggregates maybe become a promising carrier for cancer gene therapy and also provided an alternative strategy for designing new gene carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b11390 | DOI Listing |
Nat Commun
January 2025
CIRI, Centre International de Recherche en Infectiologie Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
Prime Editing can rewrite genes in living cells by allowing point mutations, deletions, or insertion of small DNA sequences with high precision. However, its safe and efficient delivery into human stem cells remains a technical challenge. In this report, we engineer Nanoscribes, virus-like particles that encapsidate ribonucleoprotein complexes of the Prime Editing system and allow their delivery into recipient cells.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Institute of Molecular Biotechnology (IMBT), BOKU University, Vienna, Austria.
Efficient recombinant protein production requires mammalian stable cell lines or often relies on inefficient transfection processes. Baculoviral transduction of mammalian cells (BacMam) offers cost-effective and robust gene transfer and straightforward scalability. The advantages over conventional approaches are, no need of high biosafety level laboratories, efficient transduction of various cell types and transfer of large transgenes into host cells.
View Article and Find Full Text PDFAs an advanced nucleic acid therapeutical modality, mRNA can express any type of protein in principle and thus holds great potential to prevent and treat various diseases. Despite the success in COVID-19 mRNA vaccines, direct local delivery of mRNA into the lung by inhalation would greatly reinforce the treatment of pulmonary pathogens and diseases. Herein, we developed lipid nanoparticles (LNPs) from degradable ionizable glycerolipids for potent pulmonary mRNA delivery via nebulization.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China. Electronic address:
MicroRNA (miRNA) imaging in living cells is paramount for comprehending its dynamic functions and profiles, offering valuable insights into miRNA-related cellular processes. However, this remains challenging due to limited transfection agents and the low abundance of miRNAs. Herein, a smart nanosystem was proposed for miRNA imaging in living cells by ingeniously integrating cyclometalated ruthenium (II) nanoparticles (RuNPs) with a catalyzed hairpin assembly (CHA) strategy.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!