Noninvasive Tracking of Alginate-Microencapsulated Cells.

Methods Mol Biol

Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Published: December 2017

This chapter presents a description of standardized techniques used routinely in our laboratory to encapsulate different cell types using the alginate-PLL-alginate immunoisolation system. Given the importance of noninvasive tracking of encapsulated cell transplants, we present a detailed guidance to achieve maximum efficiency and functionality of the capsule preparations for optimal tracking posttransplantation. The provided protocols cover tracking of encapsulated cells using magnetic resonance (MR), X-ray, computed tomography (CT), and ultrasound (US) imaging. Practical suggestions to optimize each method with specific references to recommended suppliers are included.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758813PMC
http://dx.doi.org/10.1007/978-1-4939-6364-5_11DOI Listing

Publication Analysis

Top Keywords

noninvasive tracking
8
tracking encapsulated
8
tracking alginate-microencapsulated
4
alginate-microencapsulated cells
4
cells chapter
4
chapter presents
4
presents description
4
description standardized
4
standardized techniques
4
techniques routinely
4

Similar Publications

Fluorofurimazine, a novel NanoLuc substrate, enhances real-time tracking of influenza A virus infection without altering pathogenicity in mice.

Microbiol Spectr

January 2025

Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA.

Unlabelled: Bioluminescence imaging (BLI) using engineered bioluminescent viruses has emerged as a powerful tool for real-time, noninvasive monitoring of viral replication in living animals. While traditional luciferase-based systems, such as firefly luciferase, have been widely used, the NanoLuc luciferase system offers distinct advantages, including its significantly smaller gene size, increased brightness, and independence from ATP as a cofactor, allowing for extracellular detection. However, the utility of NanoLuc has been limited by its traditional substrate, furimazine, which exhibits poor water solubility and potential cytotoxicity.

View Article and Find Full Text PDF

The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.

View Article and Find Full Text PDF

Introduction: The transition to electric vehicles (EVs) has highlighted the need for efficient diagnostic methods to assess the state of health (SoH) of lithium-ion batteries (LIBs) at the end of their life cycle. Electrochemical Impedance Spectroscopy (EIS) offers a non-invasive technique for determining battery degradation. However, automating this process in industrial settings remains a challenge.

View Article and Find Full Text PDF

The gut bacteria not only play a crucial role in maintaining human health but also exhibit close associations with the occurrence of numerous diseases. Understanding the physiological and pathological functions of gut bacteria and enabling early diagnosis of gut diseases heavily relies on accurate knowledge about their in vivo distribution. Consequently, there is a significant demand for noninvasive imaging techniques capable of providing real-time localization information regarding gut bacteria.

View Article and Find Full Text PDF

Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res

January 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.

Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!