Neuregulin (NRG), an epidermal growth factor is known to promote the growth of various cell types, including human melanoma cells through ErbB family of tyrosine kinases receptors. Tanapoxvirus (TPV)-encoded protein TPV-15L, a functional mimic of NRG, also acts through ErbB receptors. Here, we show that the TPV-15L protein promotes melanoma proliferation. TPV recombinant generated by deleting the 15L gene (TPVΔ15L) showed replication ability similar to that of wild-type TPV (wtTPV) in owl monkey kidney cells, human lung fibroblast (WI-38) cells, and human melanoma (SK-MEL-3) cells. However, a TPV recombinant with both 15L and the thymidine kinase (TK) gene 66R ablated (TPVΔ15LΔ66R) replicated less efficiently compared to TPVΔ15L and the parental virus. TPVΔ15L exhibited more robust tumor regression in the melanoma-bearing nude mice compared to other TPV recombinants. Our results indicate that deletion of TPV-15L gene product which facilitates the growth of human melanoma cells can be an effective strategy to enhance the oncolytic potential of TPV for the treatment of melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300959PMC
http://dx.doi.org/10.1007/s11262-016-1402-2DOI Listing

Publication Analysis

Top Keywords

human melanoma
16
nude mice
8
melanoma cells
8
tpv recombinant
8
cells human
8
melanoma
6
human
5
cells
5
tpv
5
tanapoxvirus lacking
4

Similar Publications

Melanoma-derived versican reactivates tumor-associated macrophages by upregulating pyruvate carboxylase through TLR2-MyD88-RelB axis under normoxia.

Acta Biochim Biophys Sin (Shanghai)

January 2025

International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518060, China.

Relieving hypoxia in the tumor microenvironment (TME) promotes innate and adaptive immunity. Our previous research demonstrated that reoxygenation of the TME promotes the phagocytosis and tumor-killing functions of tumor-associated macrophages (TAMs) by upregulating pyruvate carboxylase (PCB). However, the mechanism remains obscure.

View Article and Find Full Text PDF

Nanofibrous dressing materials with an antitumor function can potentially inhibit recurrence of melanoma following the surgical excision of skin tumors. In this study, hydrolyzed polyacrylonitrile (hPAN) nanofibers biofunctionalized with L-carnosine (CAR) and loaded with bio (CAR)-synthesized zinc oxide (ZnO) nanoparticles, ZnO/CAR-hPAN (hereafter called ZCPAN), were employed to develop an antimelanoma wound dressing. Inspired by the formulation of the commercial wound healing Zn-CAR complex, i.

View Article and Find Full Text PDF

Synthesis and Evaluation of Cytotoxic Activity of RuCp(II) Complexes Bearing (Iso)nicotinic Acid Based Ligands.

Pharmaceuticals (Basel)

January 2025

Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

Background/objectives: Cancer remains one of the major challenges of our century. Organometallic ruthenium complexes are gaining recognition as a highly promising group of compounds in the development of cancer treatments.

Methods: Building on the auspicious results obtained for [Ru(η-CH)(PPh)(bipy)][CFSO] (TM34), our focus has shifted to examining the effects of incorporating bioactive ligands into the TM34 framework, particularly within the cyclopentadienyl ring.

View Article and Find Full Text PDF

Background: Melanoma is the most aggressive and lethal skin cancer that affects thousands of people worldwide. Ruthenium complexes have shown promising results as cancer chemotherapeutics, offering several advantages over platinum drugs, such as potent efficacy, low toxicity, and less drug resistance. Additionally, anthraquinone derivatives have broad therapeutic applications, including melanoma.

View Article and Find Full Text PDF

Human serum albumin (HSA) plays a fundamental role in the human body, including the transport of exogenous and endogenous substances. HSA is also a biopolymer with a great medical and pharmaceutical potential. Due to nontoxicity and biocompatibility, this protein can be used as a nanocarrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!