Background: Fascioloides magna (Trematoda: Fasciolidae) is an important liver parasite of a wide range of free-living and domestic ruminants; it represents a remarkable species due to its large spatial distribution, invasive character, and potential to colonize new territories. The present study provides patterns of population genetic structure and admixture in F. magna across all enzootic regions in North America and natural foci in Europe, and infers migratory routes of the parasite on both continents.
Methods: In total, 432 individuals from five North American enzootic regions and three European foci were analysed by 11 microsatellite loci. Genetic data were evaluated by several statistical approaches: (i) the population genetic structure of F. magna was inferred using program STRUCTURE; (ii) the genetic interrelationships between populations were analysed by PRINCIPAL COORDINATES ANALYSIS; and (iii) historical dispersal routes in North America and recent invasion routes in Europe were explored using MIGRATE.
Results: The analysis of dispersal routes of the parasite in North America revealed west-east and south-north lineages that partially overlapped in the central part of the continent, where different host populations historically met. The exact origin of European populations of F. magna and their potential translocation routes were determined. Flukes from the first European focus, Italy, were related to F. magna from northern Pacific coast, while parasites from the Czech focus originated from south-eastern USA, particularly South Carolina. The Danube floodplain forests (third and still expanding focus) did not display relationship with any North American population; instead the Czech origin of the Danube population was indicated. A serial dilution of genetic diversity along the dispersion route across central and eastern Europe was observed. The results of microsatellite analyses were compared to previously acquired outputs from mitochondrial haplotype data and correlated with past human-directed translocations and natural migration of the final cervid hosts of F. magna.
Conclusions: The present study revealed a complex picture of the population genetic structure and interrelationships of North American and European populations, global distribution and migratory routes of F. magna and an origin of European foci.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5064932 | PMC |
http://dx.doi.org/10.1186/s13071-016-1811-z | DOI Listing |
Viruses
December 2024
Wadsworth Center, David Axelrod Institute, New York State Department of Health, Albany, NY 12208, USA.
A historical perspective of more than one hundred years of influenza surveillance in New York State demonstrates the progression from anecdotes and case counts to next-generation sequencing and electronic database management, greatly improving pandemic preparedness and response. Here, we determined if influenza virologic surveillance at the New York State public health laboratory (NYS PHL) tests sufficient specimen numbers within preferred confidence limits to assess situational awareness and detect novel viruses that pose a pandemic risk. To this end, we analyzed retrospective electronic data on laboratory test results for the influenza seasons 1997-1998 to 2021-2022 according to sample sizes recommended in the Influenza Virologic Surveillance Right Size Roadmap issued by the Association of Public Health Laboratories and Centers for Disease Control and Prevention.
View Article and Find Full Text PDFViruses
December 2024
U.S. Geological Survey, Upper Midwest Water Science Center, 5840 Enterprise Drive, Lansing, MI 48911, USA.
Since late 2021, outbreaks of highly pathogenic avian influenza virus have caused a record number of mortalities in wild birds, domestic poultry, and mammals in North America. Wetlands are plausible environmental reservoirs of avian influenza virus; however, the transmission and persistence of the virus in the aquatic environment are poorly understood. To explore environmental contamination with the avian influenza virus, a large-volume concentration method for detecting infectious avian influenza virus in waterbodies was developed.
View Article and Find Full Text PDFViruses
December 2024
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in multiple animal species, including white-tailed deer (WTD), raising concerns about zoonotic transmission, particularly in environments with frequent human interactions. To understand how human exposure influences SARS-CoV-2 infection in WTD, we compared infection and exposure prevalence between farmed and free-ranging deer populations in Florida. We also examined the timing and viral variants in WTD relative to those in Florida's human population.
View Article and Find Full Text PDFViruses
December 2024
Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada.
Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada.
View Article and Find Full Text PDFViruses
November 2024
Department of Public Health, Ministry of Health, P.O. Box 24923, Kuwait City 13110, Kuwait.
Continuous surveillance is critical for early intervention against emerging novel SARS-CoV-2 variants. Therefore, we investigated and compared the variant-specific evolutionary epidemiology of all the Delta and Omicron sequences collected between 2021 and 2023 in Kuwait. We used Bayesian phylodynamic models to reconstruct, trace, and compare the two variants' demographics, phylogeographic, and host characteristics in shaping their evolutionary epidemiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!