Background: LCL161, a novel Smac mimetic, is known to have anti-tumor activity and improve chemosensitivity in various cancers. However, the function and mechanisms of the combination of LCL161 and paclitaxel in non-small cell lung cancer (NSCLC) remain unknown.

Methods: Cellular inhibitor of apoptotic protein 1 and 2 (cIAP1&2) expression in NSCLC tissues and adjacent non-tumor tissues were assessed by immunohistochemistry. The correlations between cIAP1&2 expression and clinicopathological characteristics, prognosis were analyzed. Cell viability and apoptosis were measured by MTT assays and Flow cytometry. Western blot and co-immunoprecipitation assay were performed to measure the protein expression and interaction in NF-kB pathway. siRNA-mediated gene silencing and caspases activity assays were applied to demonstrate the role and mechanisms of cIAP1&2 and RIP1 in lung cancer cell apoptosis. Mouse xenograft NSCLC models were used in vivo to determine the therapeutic efficacy of LCL161 alone or in combination with paclitaxel.

Results: The expression of cIAP1 and cIAP2 in Non-small cell lung cancer (NSCLC) tumors was significantly higher than that in adjacent normal tissues. cIAP1 was highly expressed in patients with late TNM stage NSCLC and a poor prognosis. Positivity for both cIAP1 and cIAP2 was an independent prognostic factor that indicated a poorer prognosis in NSCLC patients. LCL161, an IAP inhibitor, cooperated with paclitaxel to reduce cell viability and induce apoptosis in NSCLC cells. Molecular studies revealed that paclitaxel increased TNFα expression, thereby leading to the recruitment of various factors and the formation of the TRADD-TRAF2-RIP1-cIAP complex. LCL161 degraded cIAP1&2 and released RIP1 from the complex. Subsequently, RIP1 was stabilized and bound to caspase-8 and FADD, thereby forming the caspase-8/RIP1/FADD complex, which activated caspase-8, caspase-3 and ultimately lead to apoptosis. In nude mouse xenograft experiments, the combination of LCL161 and paclitaxel degraded cIAP1,2, activated caspase-3 and inhibited tumor growth with few toxic effects.

Conclusion: Thus, LCL161 could be a useful agent for the treatment of NSCLC in combination with paclitaxel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062899PMC
http://dx.doi.org/10.1186/s13046-016-0435-7DOI Listing

Publication Analysis

Top Keywords

ciap1 ciap2
12
lung cancer
12
nsclc
9
lcl161
8
combination lcl161
8
lcl161 paclitaxel
8
non-small cell
8
cell lung
8
cancer nsclc
8
ciap1&2 expression
8

Similar Publications

cIAP2 supports the cell growth-promoting activity of FMR1 in gastric cancer via CARD-RING domains.

Biochem Biophys Res Commun

January 2025

Department of Biology, Kyung Hee University, Seoul, 02447, South Korea. Electronic address:

Fragile X Mental Retardation Protein 1 (FMR1) is a translational repressor crucial for regulating genes in the central nervous system. While a lack of FMR1 expression causes Fragile X Syndrome (FXS), its overexpression is implicated in various cancers, necessitating tight regulation of FMR1 protein levels for normal cell physiology. In this study, we report that FMR1 is upregulated in gastric cancer patients.

View Article and Find Full Text PDF

Complex IIa formation and ABC transporters determine sensitivity of OSCC to Smac mimetics.

Cell Death Dis

November 2024

Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.

Small molecule inhibitors of apoptosis proteins (IAPs) antagonists, known as Smac mimetics (SMs), activate non-canonical NF-κB and sensitize cancer cells to TNF-induced cell death. SMs are currently in phase III clinical trials for head and neck squamous cell carcinoma (HNSCC) after promising phase II trials. To explore the utility of SMs in oral squamous cell carcinoma (OSCC), we tested nine human OSCC cell lines and correlated SM sensitivity with both IAP mutation and expression levels.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most malignant brain tumor frequently characterized by a hypoxic microenvironment. In this investigation, we unveiled unprecedented role of Ribonuclease 4 (RNASE4) in GBM pathogenesis through integrative methodologies. Leveraging The Cancer Genome Atlas (TCGA) dataset and clinical specimens from normal brain tissues, low- and high-grade gliomas, alongside rigorous and functional analyses, we identified a consistent upregulation of RNASE4 correlating with advanced GBM pathological stages and poor clinical survival outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • Rheumatoid arthritis (RA) is an autoimmune disease that leads to inflammation of the joints, primarily driven by fibroblast-like synoviocytes (FLS) which produce inflammatory substances like TNF-α and IL-6.
  • FLS in RA behave similarly to tumors, proliferating aggressively and resisting cell death, contributing to joint damage.
  • Targeting E3 ubiquitin ligases like cIAP2 may offer potential treatments for RA by reducing inflammation and FLS survival, though the potential side effects of these treatments need further investigation.
View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!