Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity.

Biomaterials

Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 8854, USA; Department of Chemical & Biochemical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854, USA. Electronic address:

Published: December 2016

Neuroinflammation, a common neuropathologic feature of neurodegenerative disorders including Parkinson disease (PD), is frequently exacerbated by microglial activation. The extracellular protein α-synuclein (ASYN), whose aggregation is characteristic of PD, remains a key therapeutic target, but the control of synuclein trafficking and aggregation within microglia has been challenging. First, we established that microglial internalization of monomeric ASYN was mediated by scavenger receptors (SR), CD36 and SRA1, and was rapidly accompanied by the formation of ASYN oligomers. Next, we designed a nanotechnology approach to regulate SR-mediated intracellular ASYN trafficking within microglia. We synthesized mucic acid-derivatized sugar-based amphiphilic molecules (AM) with optimal stereochemistry, rigidity, and charge for enhanced dual binding affinity to SRs and fabricated serum-stable nanoparticles via flash nanoprecipitation comprising hydrophobe cores and amphiphile shells. Treatment of microglia with AM nanoparticles decreased monomeric ASYN internalization and intracellular ASYN oligomer formation. We then engineered composite deactivating NPs with dual character, namely shell-based SR-binding amphiphiles, and core-based antioxidant poly (ferrulic acid), to investigate concerted inhibition of oxidative activation. In ASYN-challenged microglia treated with NPs, we observed decreased ASYN-mediated acute microglial activation and diminished microglial neurotoxicity caused by exposure to aggregated ASYN. When the composite NPs were administered in vivo within the substantia nigra of fibrillar ASYN-challenged wild type mice, there was marked attenuation of activated microglia. Overall, SR-targeting AM nanotechnology represents a novel paradigm in alleviating microglial activation in the context of synucleinopathies like PD and other neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5262519PMC
http://dx.doi.org/10.1016/j.biomaterials.2016.10.001DOI Listing

Publication Analysis

Top Keywords

microglial activation
12
monomeric asyn
8
intracellular asyn
8
asyn
7
microglial
6
activation
5
microglia
5
polymer brain-nanotherapeutics
4
brain-nanotherapeutics multipronged
4
multipronged inhibition
4

Similar Publications

Neurosteroids play an important role as endogenous neuromodulators that are locally produced in the central nervous system and rapidly change the excitability of neurons and the activation of microglial cells and astrocytes. Here we review the mechanisms of synthesis, metabolism, and actions of neurosteroids in the central nervous system. Neurosteroids are able to play a variety of roles in the central nervous system under physiological conditions by binding to membrane ion channels and receptors such as gamma-aminobutyric acid type A receptors, Nmethyl- D-aspartate receptors, L- and T-type calcium channels, and sigma-1 receptors.

View Article and Find Full Text PDF

Microglial galectin-3 increases with aging in the mouse hippocampus.

Korean J Physiol Pharmacol

January 2025

Department of Anatomy and Convergence Medical Science, Institute of Medical Science, College of Medicine, Gyeongsang National University, Jinju 52727, Korea.

Microglial activation during aging is associated with neuroinflammation and cognitive impairment. Galectin-3 plays a crucial role in microglial activation and phagocytosis. However, the role of galectin-3 in the aged brain is not completely understood.

View Article and Find Full Text PDF

Ultrasmall iron-gallic acid coordination polymer nanoparticles for scavenging ROS and suppressing inflammation in tauopathy-induced Alzheimer's disease.

Biomaterials

December 2024

Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, China; Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China. Electronic address:

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder globally, with no effective treatment available yet. A crucial pathological hallmark of AD is the accumulation of hyperphosphorylated tau protein, which is deteriorated by reactive oxygen species (ROS) and neuroinflammation in AD progression. Thus, alleviation of ROS and inflammation has become a potential therapeutic strategy in many studies.

View Article and Find Full Text PDF

Neurons as Immunomodulators: From Rapid Neural Activity to Prolonged Regulation of Cytokines and Microglia.

Annu Rev Biomed Eng

January 2025

2Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; email:

Regulation of the brain's neuroimmune system is central to development, normal function, and disease. Neuronal communication to microglia, the primary immune cells of the brain, is well known to involve purinergic signaling mediated via ATP secretion and the cytokine fractalkine. Recent evidence shows that neurons release multiple cytokines beyond fractalkine, yet these are less studied and poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!