Cortical circuits and modules in movement generation: experiments and theories.

Curr Opin Neurobiol

McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.

Published: December 2016

Here we review recent studies of the cortical circuits subserving the control of posture and movement. This topic is addressed from neurophysiological and evolutionary perspectives describing recent advancements achieved through experimental studies in humans and non-human primates. We also describe current debates and controversies concerning motor mapping within the motor cortex and the different computational approaches aimed at resolving the mystery around motor representations and computations. In recent years there is growing interest in the possibly modular organization of motor representations and dynamical processes and the potential of such studies to provide new clues into motor information processing. Hence this review focuses on motor modularity, highlighting the new research directions inspired by empirical findings and theoretical models developed within the last several years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.conb.2016.09.013DOI Listing

Publication Analysis

Top Keywords

cortical circuits
8
motor representations
8
motor
6
circuits modules
4
modules movement
4
movement generation
4
generation experiments
4
experiments theories
4
theories review
4
review studies
4

Similar Publications

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored.

View Article and Find Full Text PDF

Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task.

View Article and Find Full Text PDF

Hypomanic personality traits (HPT) are susceptibility markers for psychiatric disorders, particularly bipolar disorder, and are strongly associated with aggressive behaviors. However, the neuropsychological mechanisms underlying this association remain unclear. This study utilized psychometric network analysis and (IS-RSA) to explore the neuropsychological circuits that link HPT to aggression in a large non-clinical population.

View Article and Find Full Text PDF

Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections.

View Article and Find Full Text PDF

Selective activation of mesoscale functional circuits via multichannel infrared stimulation of cortical columns in ultra-high-field 7T MRI.

Cell Rep Methods

January 2025

Department of Neurosurgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310029, China; Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou 310029, China; National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310012, China. Electronic address:

To restore vision in the blind, advances in visual cortical prosthetics (VCPs) have offered high-channel-count electrical interfaces. Here, we design a 100-fiber optical bundle interface apposed to known feature-specific (color, shape, motion, and depth) functional columns that populate the visual cortex in humans, primates, and cats. Based on a non-viral optical stimulation method (INS, infrared neural stimulation; 1,875 nm), it can deliver dynamic patterns of stimulation, is non-penetrating and non-damaging to tissue, and is movable and removable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!