Unusual Multiferroic Phase Transitions in PbTiO Nanowires.

Nano Lett

Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.

Published: November 2016

Unconventional phases and their transitions in nanoscale systems are recognized as an intriguing avenue for both unique physical properties and novel technological paradigms. Although the multiferroic phase has attracted considerable attention due to the coexistence and cross-coupling of electric and magnetic order parameters, mutually exclusive mechanism between ferroelectricity and ferromagnetism leaves conventional ferroelectrics such as PbTiO simply nonmagnetic. Here, we demonstrate from first-principles that ultrathin PbTiO nanowires exhibit unconventional multiferroic phases with emerging ferromagnetism and coexisting ferroelectric/ferrotoroidic ordering. Nanometer-scale and nonstoichiometric effects intrinsic to the nanowires bring about nonzero and nontrivial magnetic moments that coexist with the host ferroelectricity. The multiferroic order is susceptible to surface termination and nanowire morphology. Furthermore, calculations suggest that the nanowires undergo size-dependent ferroelectric-multiferroic-ferromagnetic phase transitions. This work therefore provides a route to multiferroic transitions in conventional nonmagnetic ferroelectric oxides.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b02370DOI Listing

Publication Analysis

Top Keywords

multiferroic phase
8
phase transitions
8
pbtio nanowires
8
unusual multiferroic
4
transitions
4
transitions pbtio
4
nanowires
4
nanowires unconventional
4
unconventional phases
4
phases transitions
4

Similar Publications

In this work, three composite materials based on Terfenol-D and PZT-type material were obtained with a classic sintering method using a combination of 0-3 phases, where the ferroelectric phase was doped PZT material (P) and the magnetic phase was Terfenol-D (T). The percentage of P and T components in the composites was variable, i.e.

View Article and Find Full Text PDF

Bismuth ferrites, specifically perovskite-type BiFeO and mullite-type BiFeO, hold significant technological promise as catalysts, photovoltaics, and room-temperature multiferroics. However, challenges arise due to their frequent cocrystallization, particularly in the nanoregime, hindering the production of phase-pure materials. This study unveils a controlled sol-gel crystallization approach, elucidating the phase formation complexities in the bismuth ferrite oxide system by coupling thermochemical analysis and total scattering with pair distribution function analysis.

View Article and Find Full Text PDF

Type-II multiferroicity from non-collinear spin order is recently explored in the van der Waals material NiI. Despite the importance for improper ferroelectricity, the microscopic mechanism of the helimagnetic order remains poorly understood. Here, the magneto-structural phases of NiI are investigated using resonant magnetic X-ray scattering (RXS) and X-ray diffraction.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Recently, the emergence of two-dimensional (2D) multiferroic materials has opened a new perspective for exploring topological states. However, instances of tuning topological phase transitions through ferroelectric (FE) polarization in 2D ferromagnetic (FM) materials are relatively rare. Here, we found that 11 single layer (SL) materials, named the MMGeX family, possess both FE and FM properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!