Pathogenic germline mutations in the folliculin (FLCN) tumor suppressor gene predispose to Birt-Hogg-Dubé (BHD) syndrome, a rare disease characterized by the development of cutaneous hamartomas (fibrofolliculomas), multiple lung cysts, spontaneous pneumothoraces and renal cell cancer. In this study, we report the identification of 13 variants and three polymorphisms in the FLCN gene in 143 Danish patients or families with suspected BHD syndrome. Functional mini-gene splicing analysis revealed that two intronic variants (c.1062+2T>G and c.1177-5_1177-3del) introduced splicing aberrations. Eleven families exhibited the c.1062+2T>G mutation. Combined single nucleotide polymorphism array-haplotype analysis showed that these families share a 3-Mb genomic fragment containing the FLCN gene, revealing that the c.1062+2T>G mutation is a Danish founder mutation. On the basis of in silico prediction and functional splicing assays, we classify the 16 identified variants in the FLCN gene as follows: nine as pathogenic, one as likely pathogenic, three as likely benign and three as polymorphisms. In conclusion, the study describes the FLCN mutation spectrum in Danish BHD patients, and contributes to a better understanding of BHD syndrome and management of BHD patients.

Download full-text PDF

Source
http://dx.doi.org/10.1038/jhg.2016.118DOI Listing

Publication Analysis

Top Keywords

flcn gene
16
bhd syndrome
12
danish founder
8
founder mutation
8
three polymorphisms
8
c1062+2t>g mutation
8
bhd patients
8
flcn
6
gene
5
mutation
5

Similar Publications

In this article, we report the first case of a 61-year-old woman who was diagnosed with both nodules and cystic lesions in her lungs. The lung nodules were diagnosed as ALK-positive histiocytosis (APH) carrying an gene fusion, which microscopically displayed a mixed morphology of foamy cells, spindle cells, and Touton's giant cells. Immunohistochemistry showed expression of CD163, CD68, and ALK, while fluorescence hybridization (FISH) with second-generation sequencing (NGS) showed the ALK gene fusion with the FLCN gene variant.

View Article and Find Full Text PDF

Pathological cardiac remodeling is a maladaptive response that leads to changes in the size, structure, and function of the heart. These changes occur due to an acute or chronic stress on the heart and involve a complex interplay of hemodynamic, neurohormonal and molecular factors. As a critical regulator of cell growth, protein synthesis and autophagy mechanistic target of rapamycin complex 1 (mTORC1) is an important mediator of pathological cardiac remodeling.

View Article and Find Full Text PDF

Background: Prolonged natural selection and artificial breeding have contributed to increased uniformity within the Tibetan sheep population, resulting in a reduction in genetic diversity and the establishment of selective signatures in the genome. This process has led to a loss of heterozygosity in specific genomic regions and the formation of Runs of Homozygosity (ROH). Current research on ROH predominantly focuses on inbreeding and the signals of selection; however, there is a paucity of investigation into the genetic load and selective pressures associated with ROH, both within these regions and beyond.

View Article and Find Full Text PDF

Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant genetic disorder. This case report aims to increase awareness of pulmonary cystic lesions and BHDS in China by providing insights into the clinical features of this syndrome. We present two cases of BHDS from the same family.

View Article and Find Full Text PDF

Induction of lysosome biogenesis is a novel function of the CGAS-STING1 pathway.

Autophagy

January 2025

Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Induction of macroautophagy/autophagy has been established as an important function elicited by the CGAS-STING1 pathway during pathogen infection. However, it remains unknown whether lysosomal activity within the cell in these settings is concurrently enhanced to cope with the increased autophagic flux. Recently, we discovered that the CGAS-STING1 pathway elevates the degradative capacity of the cell by activating lysosome biogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!