In this study, dispersible mesoporous nitrogen-doped hollow carbon nanoplates have been synthesized as a new anisotropic carbon nanostructure using gibbsite nanoplates as templates. The gibbsite-silica core-shell nanoplates were first prepared before the gibbsite core was etched away. Dopamine as carbon precursor was self-polymerized on the hollow silica nanoplates surface assisted by sonification, which not only favors a homogeneous polymer coating on the nanoplates but also prevents their aggregation during the polymerization. Individual silica-polydopamine core-shell nanoplates were immobilized in a silica gel in an insulated state via a silica nanocasting technique. After pyrolysis in a nanoconfine environment and elimination of silica, discrete and dispersible hollow carbon nanoplates are obtained. The resulted hollow carbon nanoplates bear uniform hexagonal morphology with specific surface area of 460 m·g and fairly accessible small mesopores (∼3.8 nm). They show excellent colloidal stability in aqueous media and are applied as electrode materials for symmetric supercapacitors. When using polyvinylimidazolium-based nanoparticles as a binder in electrodes, the hollow carbon nanoplates present superior performance in parallel to polyvinylidene fluoride (PVDF) binder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b08946 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, Tennessee 37996, United States.
Porous liquids have traditionally been designed with sterically hindered solvents. Alternatively, recent efforts rely on dispersing microporous frameworks in simpler solvents like water. Here we report a unique strategy to construct macroporous water by selectively incorporating hydrophilicity on the surfaces of hydrophobic hollow carbon spheres (HCS).
View Article and Find Full Text PDFChem Sci
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University Nanyang 473601 P. R. China
The conversion of carbon dioxide (CO) into carbon-neutral fuels using solar energy is crucial for achieving energy sustainability. However, the high carrier charge recombination and low CO adsorption capacity of the photocatalysts present significant challenges. In this paper, a TAPB-COF@ZnInS-30 (TAPB-COFZ-30) heterojunction photocatalyst was constructed by growth of ZnInS (ZIS) on a hollow covalent organic framework (HCOF) with a hollow core-shell structure for CO to CO conversion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Department of Chemistry, 83 Tat Chee Avenue, Hong Kong, HONG KONG.
Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada.
One of the key technical challenges before the widespread adoption of proton exchange membrane fuel cells (PEMFCs) is increasing the durability of the platinum catalyst layer to meet a target of 8000 operating hours with only a 10% loss of performance. Carbon corrosion, one of the primary mechanisms of degradation in fuel cells, has attracted attention from researchers interested in solving the durability problem. As such, the development of catalyst supports to avoid this issue has been a focus in recent years, with interest in hydrophobic supports such as highly graphitized carbons.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Phase change fibers (PCFs) can effectively store and release heat, improve energy efficiency, and provide a basis for a wide range of energy applications. Improving energy storage density and preserving flexibility are the primary issues in the efficient manufacture and application development of PCFs. Herein, we have successfully fabricated a suite of flexible PCFs with high energy storage density, which use hollow carbon fibers (HCFs) encapsulated phase change materials (PCMs) to provide efficient heat storage and release, thereby enhancing energy efficiency and underpinning a broad range of energy applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!