Regulation of Interleukin-10 Expression.

Adv Exp Med Biol

Department of Immunology, Genentech, South San Francisco, CA, USA.

Published: January 2019

Interleukin (IL)-10 is an essential anti-inflammatory cytokine that plays important roles as a negative regulator of immune responses to microbial antigens. Loss of IL-10 results in the spontaneous development of inflammatory bowel disease as a consequence of an excessive immune response to the gut microbiota. IL-10 also functions to prevent excessive inflammation during the course of infection. IL-10 can be produced in response to pro-inflammatory signals by virtually all immune cells, including T cells, B cells, macrophages, and dendritic cells. Given its function in maintaining the delicate balance between effective immunity and tissue protection, it is evident that IL-10 expression is highly dynamic and needs to be tightly regulated. The transcriptional regulation of IL-10 production in myeloid cells and T cells is the topic of this review. Drivers of IL-10 expression as well as their downstream signaling pathways and transcription factors will be discussed. We will examine in more detail how various signals in CD4 T cells converge on common transcriptional circuits, which fine-tune IL-10 expression in a context-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-024-0921-5_5DOI Listing

Publication Analysis

Top Keywords

il-10 expression
12
il-10
8
cells cells
8
cells
7
regulation interleukin-10
4
expression
4
interleukin-10 expression
4
expression interleukin
4
interleukin il-10
4
il-10 essential
4

Similar Publications

Clove oil obtained from Syzygium aromaticum (L.) is traditionally employed to treat inflammation associated with rheumatism, gastric disorders, and as an analgesic. Chemo-herbal combinations are known to have potent anti-inflammatory and analgesic effects, while mitigating the drug related side effects.

View Article and Find Full Text PDF

Background: Previously, we found that germline C3 deletion protected cognition and hippocampal synapses in aged APP/PS1dE9 mice, despite increasing Aß plaques. Here, we crossed our C3 inducible conditional mouse model to APP knockin mice to determine whether global C3 lowering in an adult amyloid mouse model would be protective.

Methods: C3;Rosa26-Cre-ERT2 (C3iKO) mice were crossed to C3;APP mice to generate APP;C3iKO mice, which received 75 mg/kg tamoxifen (TAM; n = 16) or corn oil (CO; n = 15) for 5 days at 3.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Background: One of the major outstanding questions in the field of Alzheimer's disease (AD) research is the underlying mechanism by which APOE ε4, the strongest genetic risk factor for AD, contributes to disease pathogenesis. Current therapies targeting amyloid-beta plaques show modest effect in non-APOE4 male AD patients, and greatly increase the risk for amyloid-related imaging abnormalities - edema/effusion (ARIA-E) in APOE ε4 carriers. We made an important discovery that APOE4 neutrophil-microglia interactions drive cognitive impairment in a sex-dependent manner.

View Article and Find Full Text PDF

The Effect of Clostridium butyricum-Derived Lipoteichoic Acid on Lipopolysaccharide-Stimulated Porcine Intestinal Epithelial Cells.

Vet Med Sci

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Background: Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear.

Objective: This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2).

View Article and Find Full Text PDF

Circulating biomarkers associated with pediatric sickle cell disease.

Front Mol Biosci

December 2024

Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.

Introduction: Sickle cell disease (SCD) is a genetic blood disorder caused by a mutation in the HBB gene, which encodes the beta-globin subunit of hemoglobin. This mutation leads to the production of abnormal hemoglobin S (HbS), causing red blood cells to deform into a sickle shape. These deformed cells can block blood flow, leading to complications like chronic hemolysis, anemia, severe pain episodes, and organ damage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!