There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications. Currently, green-synthesized nanoparticles have emerged as a safe, efficient, and inexpensive alternative for therapeutic uses. The present study discloses the silver nanoparticle biosynthesizing capability and cardioprotective potential of Syzygium cumini seeds already reported to have antidiabetic properties. Newly generated silver nanoparticles S. cumini MSE silver nanoparticles (SmSNPs) were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), zeta sizer, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Using methanolic extract of S. cumini seeds, an average size of 40-100-nm nanoparticles with 43.02 nm and -19.6 mV zeta potential were synthesized. The crystalline nature of SmSNPs was identified by using XRD. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays revealed the antioxidative potential to be 66.87 (±0.7) % and 86.07 (±0.92) % compared to 60.29 (±0.02) % and 85.67 (±1.27) % for S. cumini MSE. In vitro study on glucose-stressed H9C2 cardiac cells showed restoration in cell size, nuclear morphology, and lipid peroxide formation upon treatment of SmSNPs. Our findings concluded that S. cumini MSE SmSNPs significantly suppress the glucose-induced cardiac stress in vitro by maintaining the cellular integrity and reducing the oxidative damages therefore establishing its therapeutic potential in diabetic cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-016-2274-6DOI Listing

Publication Analysis

Top Keywords

cumini mse
12
glucose-induced cardiac
8
cardiac stress
8
diabetic cardiomyopathy
8
cumini seeds
8
silver nanoparticles
8
cumini
6
nanoparticles
5
potential
5
synthesis characterization
4

Similar Publications

Black berry () fruit is useful in curing diabetic complications; however, its role in diabetes-induced cardiomyopathy is not yet known. In this study, we investigated the regulation of gelatinase-B (MMP-9) by methanol seed extract (MSE) in diabetic cardiomyopathy using real-time PCR, RT-PCR, immunocytochemistry, gel diffusion assay, and substrate zymography. The regulatory effects of MSE on NF-B, TNF-, and IL-6 were also examined.

View Article and Find Full Text PDF

There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications.

View Article and Find Full Text PDF

Diabetic patients are known to have an independent risk of cardiomyopathy. Hyperglycemia leads to upregulation of reactive oxygen species (ROS) that may contribute to diabetic cardiomyopathy. Thus, agents that suppress glucose-induced intracellular ROS levels can have therapeutic potential against diabetic cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!