Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Some anticonvulsant drugs are associated with cognitive ability in patients; Topiramate (TPM) is well known as an effective anticonvulsant agent applied in clinical settings. However, the effect of TPM on the cognitive function is rarely studied. In this study, we aimed to observe the effects of TPM on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the D-galactose-induced aging mice by Ki-67 and doublecortin (DCX) immunohistochemistry. The study is divided into four groups including control, D-galactose-treated group, 25 and 50 mg/kg TPM-treated plus D-galactose-treated groups. We found, 50 mg/kg (not 25 mg/kg) TPM treatment significantly increased the numbers of Ki-67 cells and DCX immunoreactivity, and improved neuroblast injury induced by D-galactose treatment. In addition, we also found that decreased immunoreactivities and protein levels of antioxidants including superoxide dismutase and catalase induced by D-galactose treatment were significantly recovered by 50 mg/kg TPM treatment in the mice hippocampal DG (P < 0.05). In conclusion, our present results indicate that TPM can ameliorate neuroblast damage and promote cell proliferation and neuroblast differentiation in the hippocampal DG via increasing SODs and catalase levels in the D-galactose mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10571-016-0424-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!