ApoA1 is a player in reverse cholesterol transport that initiates multiple cellular pathways on binding to its receptor ABCA1. Its relation to neuronal injury is however unclear. We found ApoA1 to be increasingly abundant at a later time point in the secondary phase of traumatic spinal cord injury. In a cellular injury model of neuroblastoma, ApoA1 showed an initial diminished expression after infliction of injury, which sharply increased thereafter. Subsequently, ApoA1 was shown to alter wound healing dynamics in neuroblastoma injury model. It was observed that an initial lag in scratch wound closure was followed by rapid healing in the ApoA1 treatment group. Activation of ERK pathway and Actin polymerisation by ApoA1 corroborated its role in healing after neuronal injury. We propose that ApoA1 is increasingly expressed and secreted as a delayed response to neuronal injury, and this is a self-protecting mechanism of the injured system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11010-016-2841-8 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Psychology, Vanderbilt University, Nashville, TN 37240.
Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Beijing, China.
Objective: Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Aim: Given that electroacupuncture (EA) pretreatment inhibits lactate production and lactate-derived lysine lactation (Kla) aggravates ischemic brain injury, we aimed to investigate whether the formation of Kla protein is involved in EA pretreatment to alleviate ischemic brain injury.
Methods: EA was performed on the Baihui acupoint (GV20) of male C57BL/6J mice before receiving the permanent middle cerebral artery occlusion (pMCAO) surgery. Western blot and immunofluorescent staining were used to observe neuronal survival, astrocyte activation, and protein Kla levels, and the lactate levels in ischemic brains were assayed with a commercial kit.
J Nanobiotechnology
January 2025
Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
Background: Spinal cord injury (SCI) treatment remains a formidable challenge, as current therapeutic approaches provide only marginal relief and fail to reverse the underlying tissue damage. This study aims to develop a novel composite material combining enzymatic nanoparticles and nerve growth factor (NGF) to modulate the immune microenvironment and enhance SCI repair.
Methods: CeMn nanoparticles (NP) and CeMn NP-polyethylene glycol (PEG) nanozymes were synthesized via sol-gel reaction and DSPE-mPEG modification.
Brain Res Bull
January 2025
Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China. Electronic address:
Poly (lactic-co-glycolic acid) (PLGA) is an important biomaterial for tissue defect repair, but its application in replacing missing brain tissue needs improvement. Mesenchymal stem cells (MSCs) have been used to treat various neurological diseases, but they face challenges when filling large tissue defects. The purpose of this study was to investigate the effects of PLGA combined with MSCs transplantation on brain structure and neural function in rats with traumatic brain injury (TBI), and explore its possible mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!