In this research work, an efficient tandem dispersive liquid-liquid microextraction (TDLLME) procedure coupled with high performance liquid chromatography-ultraviolet detection (HPLC-UV) was successfully applied for the determination of beta-blockers in human plasma and pharmaceutical wastewater samples. High clean-up and preconcentration factor are easily and rapidly feasible via this novel, cheap, and safe microextraction method, leading to high quality experimental data. It consists of two sequential dispersive liquid-liquid microextraction methods, accomplished via air/ultrasonic agitation and air agitation, respectively. In order to enrich the optimal values for the mentioned procedures, the Box-Behnken design (BBD) combined with the desirability function (DF) was used. The optimum values were found to be 11.0 % (w/v) of the salt amount, an initial pH value of 12.0, 103 μL of organic extractant phase, and 45 μL of aqueous extractant phase with pH value of 2.0, resulted in reasonable recovery percentages with a logical desirability. Under optimal experimental conditions, good linear ranges (3-2000 ng mL for metoprolol and 2.5-2500 ng mL for propranolol with the correlation of determinations (R s) higher than 0.99) and low limits of detection (0.8 and 1.0 ng mL for propranolol and metoprolol, respectively) were obtainable. Also, TDLLME-HPLC-UV provided good proper repeatabilities (relative standard deviations (RSDs) below 5.7 %, n = 3) and high enrichment factors (EFs) of 75-100. Graphical abstract TDLLME of beta-blockers from complicated matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-016-9922-0DOI Listing

Publication Analysis

Top Keywords

dispersive liquid-liquid
12
liquid-liquid microextraction
12
beta-blockers complicated
8
complicated matrices
8
tandem dispersive
8
high performance
8
performance liquid
8
extractant phase
8
high
5
rapid determination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!