Adhesion to sand and ability to mineralise low pesticide concentrations are required for efficient bioaugmentation of flow-through sand filters.

Appl Microbiol Biotechnol

Department of Geochemistry, The Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350, Copenhagen K, Denmark.

Published: January 2017

Pesticide-polluted drinking water may be remediated by inoculating waterworks sand filters with specific degrading bacteria. However, degradation efficiency is often hampered by the poor adhesion behaviour of the introduced bacteria. The phenoxy acid herbicide 4-chloro-2-methyl-phenoxy-acetic acid (MCPA) is a widespread groundwater contaminant. The aim of this study was to investigate whether specific surface characteristics of MCPA-degrading bacteria could be linked to their degrading capabilities in sand filters. Four MCPA degraders with different taxonomic affiliations and original habitats (Sphingomonas sp. PM2, Sphingomonas sp. ERG5, Burkholderia sp. TFD34, Cupriavidus sp. TFD38) were characterised with regard to their motility, cell surface hydrophobicity, biofilm formation, adhesion behaviour and ability to mineralise MCPA. Strains PM2 and ERG5 were non-motile and hydrophobic, whilst strains TFD34 and TFD38 were motile and less hydrophobic. All the strains except ERG5 showed low biofilm formation on polystyrene, although it was significantly higher on glass. PM2 was the most efficient MCPA degrader as it displayed no lag phase and reached >50 % mineralisation at all concentrations (0.0016-25 mg L). PM2 adhered significantly better to sand than the other strains. No link was found between motility, biofilm formation and the ability to adhere to sand. PM2 completely removed MCPA for 14 days when inoculated in sand columns with a constant inlet of 1 mg L MCPA. These results demonstrate that besides the ability to degrade the contaminant, surface hydrophobicity and adherence abilities are significant parameters controlling sustained degradation in flow-through sand columns and must be considered when selecting bacteria for bioaugmentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-016-7909-6DOI Listing

Publication Analysis

Top Keywords

sand filters
12
biofilm formation
12
ability mineralise
8
flow-through sand
8
adhesion behaviour
8
surface hydrophobicity
8
sand columns
8
sand
7
mcpa
6
pm2
5

Similar Publications

Chlorinated coumarins, which are as cytotoxic as highly toxic halobenzoquinones toward CHO-K1 cells, have recently been identified as disinfection byproducts in drinking water disinfection processes. Therefore, detecting coumarins in water samples collected at various stages from drinking water treatment plants helps assess the formation of chlorinated coumarins in drinking water. Hence, a simple, rapid, accurate, and sensitive method for quantifying coumarins in water samples is required.

View Article and Find Full Text PDF

Quartz sand proppant is widely used in hydraulic fracturing and the extraction of low-permeability reservoirs to prevent fracture closure and enhance reservoir recovery effectively. The influence of proppant size and type on well productivity has been widely studied, but the mechanism of proppant surface wettability on the hydraulic fracture inflow performance has not been thoroughly investigated. To further understand the influence of proppant wettability on fracture inflow performance, in this work, a hydrophobic quartz sand proppant was prepared by a simple dip-coating method using silane solution with a static water contact angle of 136.

View Article and Find Full Text PDF

A versatile setup for hydrogen isotope permeation studies.

Rev Sci Instrum

December 2024

Max-Planck-Insitut für Plasmaphysik, Boltzmannstrasse 2, Garching D-85748, Germany.

The Testbed for Analysis of Permeation of Atoms in Samples (TAPAS) is an experimental setup for ion-driven permeation studies with a focus on investigating wall materials for nuclear fusion devices. A monoenergetic, mass-filtered high-intensity keV ion beam is focused and directed onto the permeation sample by electrostatic ion optics and decelerated to the desired ion energy by a dedicated set of apertures close to the sample. We were able to obtain ion energies as low as 170 eV/D with a D3+ ion beam with an ion flux density of the order of 1020 D/m2s on a beam-wetted area of ∼33 mm2.

View Article and Find Full Text PDF
Article Synopsis
  • The Malayan banded wolf snake (Lycodon subcinctus) has an intricate taxonomic history, with confusion surrounding its classification, particularly regarding the name Anoplophallus maculatus.
  • Recent studies proposed raising a Chinese population of L. subcinctus to a species level, leading researchers to clarify that Anoplophallus maculatus actually refers to a different Neotropical snake.
  • As a resolution, a new species name, Lycodon neomaculatus sp. nov., has been proposed for Chinese populations and is characterized by distinct color patterns and scalation, with its distribution being separate from L. subcinctus.
View Article and Find Full Text PDF

The dataset represents micro computed tomography (µCT) images of undisturbed samples of constructed Technosol, obtained by sampling from the top layer of the biofilter in two bioretention cells. A bioretention cell is a stormwater management system designed to collect and temporarily retain stormwater runoff and treat it by filtering it through a soil media called a biofilter. Soil samples were collected at 7, 12, 18, 23, and 31 months after the establishment of bioretention cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!