We report laboratory spectroscopy for the first time of the = 1-0 and = 2-1 lines of NaCl and NaCl in several vibrational states. The hyperfine structure has been resolved in both transitions for all vibrational levels, which permit us to predict with high accuracy the hyperfine splitting of the rotational transitions of the two isotopologues at higher frequencies. The new data have been merged with all previous works at microwave, millimeter, and infrared wavelengths and fitted to a series of mass-independent Dunham parameters and to a potential energy function. The obtained parameters have been used to compute a new dipole moment function, from which the dipole moment for infrared transitions up to Δ = 8 has been derived. Frequency and intensity predictions are provided for all rovibrational transitions up to = 150 and = 8, from which the ALMA data of evolved stars can be modeled and interpreted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5056638 | PMC |
http://dx.doi.org/10.3847/0004-637x/825/2/150 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!