The effect of a thin α-FeO compact buffer layer (BL) on the photoelectrochemical performances of a bare α-FeO nanorods photoanode is investigated. The BL is prepared through a simple spray deposition onto a fluorine-doped tin oxide (FTO) conducting glass substrate before the growth of a α-FeO nanorods via a hydrothermal process. Insertion of the hematite BL between the FTO and the nanorods markedly enhances the generated photocurrent, by limiting undesired losses of photogenerated charges at the FTO||electrolyte interface. The proposed approach warrants a marked improvement of material performances, with no additional thermal treatment and no use/dispersion of rare or toxic species, in agreement with the principles of green chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062085 | PMC |
http://dx.doi.org/10.1038/srep35049 | DOI Listing |
Nanoscale
January 2025
Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.
Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.
Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Physics, Clarkson University, Potsdam, NY 13699-5820, USA.
Chemical mechanical planarization (CMP) is a technique used to efficiently prepare defect-free, flat surfaces of stainless steel (SS) foils and sheets that are implemented in various modern devices. CMP uses (electro)chemical reactions to structurally weaken the surface layers of a workpiece for easy removal by low-pressure mechanical abrasion. Using a model CMP system of 316/316L stainless steel (SS) in an acidic (pH = 3.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Microelectronics, Xidian University, Xi'an 710071, China.
In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with different thicknesses of unintentional doping GaN (UID-GaN) channels were compared and discussed. In order to discuss the effect of different thicknesses of the UID-GaN layer on iron-doped tails, both AlGaN/GaN HEMTs share the same 200 nm GaN buffer layer with an Fe-doped concentration of 8 × 10 cm. Due to the different thicknesses of the UID-GaN layer, the concentration of Fe trails reaching the two-dimensional electron gas (2DEG) varies.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!