Viral selection pressure has acted on restriction factors that play an important role in the innate immune system by inhibiting the replication of viruses during primate evolution. Tripartite motif-containing (TRIM) family members are some of these restriction factors. It is becoming increasingly clear that gene expression differences, rather than protein-coding regions changes, could play a vital role in the anti-retroviral immune mechanism. Increasingly, recent studies have created genome-scale catalogues of DNase I hypersensitive sites (DHSs), which demark potentially functional regulatory DNA. To improve our understanding of the molecular evolution mechanism of antiviral differences between species, we leveraged 14 130 DHSs derived from 145 cell types to characterize the regulatory landscape of the TRIM region. Subsequently, we compared the alignments of the DHSs across six primates and found 375 DHSs that are conserved in non-human primates but exhibit significantly accelerated rates of evolution in the human lineage (haDHSs). Furthermore, we discovered 31 human-specific potential transcription factor motifs within haDHSs, including the KROX and SP1, that both interact with HIV-1 Importantly, the corresponding haDHS was correlated with antiviral factor TRIM23 Thus, our results suggested that some viruses may contribute, through regulatory DNA differences, to organismal evolution by mediating TRIM gene expression to escape immune surveillance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5069514 | PMC |
http://dx.doi.org/10.1098/rspb.2016.1602 | DOI Listing |
Cells
December 2024
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.
Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles.
View Article and Find Full Text PDFJ Clin Tuberc Other Mycobact Dis
December 2024
Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
Background: Leprosy is a chronic infectious disease caused by () However, the emergence of drug-resistant strains of this bacterium, especially multidrug-resistant (MDR) strains, is a serious concern. This study aimed to evaluate the global prevalence of MDR and its implications.
Methods: Using PRISMA guidelines, we systematically reviewed ISI Web of Science, MEDLINE, and EMBASE up to August 2023 to assess the prevalence of MDR .
Int Immunopharmacol
January 2025
Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China. Electronic address:
Tripartite motif-containing proteins (TRIMs), comprising the greatest subfamily of E3 ubiquitin ligases with approximately 80 members of this family, are widely distributed in mammalian cells. TRIMs actively participate in ubiquitination of target proteins, a type of post-translational modification associated with protein degradation and other functions. Tripartite motif-containing protein 29 (TRIM29), a member of the TRIM family, differs from other members of this family in that it lacks the RING finger structural domain containing cysteine and histidine residues that mediates DNA binding, protein-protein interactions, and ubiquitin ligase, at its N-terminus.
View Article and Find Full Text PDFCell Death Discov
December 2024
Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
TRIM14 is an important member of the TRIM family and is widely expressed in a variety of tissues. Like other members of the TRIM family, TRIM14 is also involved in ubiquitination modifications. TRIM14 was initially reported as an interferon-stimulated gene (ISG).
View Article and Find Full Text PDFExp Cell Res
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq.
The tripartite motif (TRIM) proteins are well-studied as essential modulators of many processes, including the modulation of several pathways linked to immunological reactions. Most TRIM family members can polyubiquitinate the targeted proteins by acting as E3 ubiquitin ligases. According to current research, TRIMs play a critical role in innate immune response via modifying transcription factors, pattern recognition receptors (PRRs), and key adaptor proteins within innate immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!