Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE.

J Exp Clin Cancer Res

The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.

Published: October 2016

Background: Gliomas are the most common type of primary brain tumour in the central nervous system of adults. The long non-coding RNA (lncRNA) HOXA transcript at the distal tip (HOTTIP) is transcribed from the 5' tip of the HOXA locus. HOTTIP has recently been shown to be dysregulated and play an important role in the progression of several cancers. However, little is known about whether and how HOTTIP regulates glioma development.

Methods: In this study, we assayed the expression of HOTTIP in glioma tissue samples and glioma cell lines using real-time polymerase chain reaction and defined the biological functions of HOTTIP using the CCK-8 assay, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL assay) and tumour formation assay in a nude mouse model. Finally, we discovered the underlying mechanism using the Apoptosis PCR 384HT Array, Western blot, RNA immunoprecipitation (RIP) and luciferase reporter assay.

Results: HOTTIP was aberrantly down-regulated in glioma tissues and glioma cell lines (U87-MG, U118-MG, U251 and A172), and over-expression of HOTTIP inhibited the growth of glioma cell lines in vitro and in vivo. Furthermore, HOTTIP could directly bind to the brain and reproductive expression (BRE) gene and down-regulate BRE gene expression. In addition, we further verified that over-expression of the BRE gene promoted the growth of glioma cell lines in vitro. Finally, over-expression of HOTTIP significantly suppressed the expression of the cyclin A and CDK2 proteins and increased the expression of the P53 protein. However, we found that the over-expression of BRE significantly increased the expression of the cyclin A and CDK2 proteins and suppressed the expression of the P53 protein. Taken together, these findings suggested that high levels of HOTTIP reduced glioma cell growth. Additionally, the mechanism of HOTTIP-mediated reduction of glioma cell growth may involve the suppression of cyclin A and CDK2 protein expression, which increases P53 protein expression via the down-regulation of BRE.

Conclusions: Our studies demonstrated that over-expression of HOTTIP promotes cell apoptosis and inhibits cell growth in U118-MG and U87-MG human glioma cell lines by down-regulating BRE expression to regulate the expression of P53, CDK2 and Cyclin A proteins. The data described in this study indicate that HOTTIP is an interesting candidate for further functional studies in glioma and demonstrate the potential application of HOTTIP in glioma therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5062847PMC
http://dx.doi.org/10.1186/s13046-016-0431-yDOI Listing

Publication Analysis

Top Keywords

glioma cell
32
cell lines
20
cell growth
16
hottip
14
glioma
13
over-expression hottip
12
bre gene
12
cyclin cdk2
12
expression p53
12
p53 protein
12

Similar Publications

Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.

View Article and Find Full Text PDF

Neuroplasticity in Diffuse Low-grade Gliomas: Backward Modelling of Brain-tumor Interactions Prior to Diagnosis is Needed to Better Predict Recovery after Treatment.

Curr Neurol Neurosci Rep

January 2025

Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, 80 Avenue Augustin Fliche, Montpellier, 34295, France.

Purpose Of Review: In low-grade glioma (LGG), besides the patient's neurological status and tumor characteristics on neuroimaging, current treatment guidelines mainly rely on the glioma's genetics at diagnosis to define therapeutic strategy, usually starting with surgical resection. However, this snapshot in time does not take into account the antecedent period of tumor progression and its interactions with the brain before presentation. This article reviews new concepts that pertain to reconstruct the history of previous interplay between the LGG's course and adaptive changes in the connectome within which the glioma is embedded over the years preceding the diagnosis.

View Article and Find Full Text PDF

Background: While serial sampling of glioma tissue is rarely performed prior to recurrence, cerebrospinal fluid (CSF) is an underutilized longitudinal source of candidate glioma biomarkers for understanding therapeutic impacts. However, the impact of key variables to consider in longitudinal CSF samples for monitoring biomarker discovery, including anatomical location and post-surgical changes, remains unknown.

Methods: Aptamer-based proteomics was performed on 147 CSF samples from 74 patients, 71 of whom had grade 2-4 astrocytomas or grade 2-3 oligodendrogliomas.

View Article and Find Full Text PDF

IDH-mutant low-grade gliomas (LGGs) are slow-growing brain tumors that frequently progress to aggressive high-grade gliomas that have dismal outcomes. In a recent study, Wu and colleagues provide critical insights into the mechanisms underlying malignant progression by analyzing single-cell gene expression and chromatin accessibility across different tumor grades. Their findings support a two-phase model: in early stages, tumors are primarily driven by oligodendrocyte precursor-like cells and epigenetic alterations that silence tumor suppressors like CDKN2A and activate oncogenes such as PDGFRA.

View Article and Find Full Text PDF

RNF7 (Ring Finger Protein 7) is a key component of CRLs (Cullin-RING-type E3 ubiquitin ligases) and has been found to possess intrinsic anti-ROS capabilities. Aberrant expression of RNF7 has been observed in various tumor types and is known to significantly influence tumor initiation and progression. However, the specific role of RNF7 in glioblastoma remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!