A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective mercury(II) bioremoval from aqueous solution, and its electrochemical determination. | LitMetric

Effective mercury(II) bioremoval from aqueous solution, and its electrochemical determination.

Chemosphere

Centro Conjunto de Investigación en Química Sustentable CCIQS, UAEM-UNAM, Universidad Autónoma del Estado de México, Carretera Toluca-Atlacomulco, km 14.5, C.P. 50200, Toluca, México. Electronic address:

Published: January 2017

This work proposed mercury elimination using agricultural waste (Allium Cepa L.). The biomass removed 99.4% of mercury, following a pseudo-second order kinetics (r = 0.9999). The Langmuir model was adequately fitted to the adsorption isotherm, thereby obtaining the maximum mercury adsorption capacity of 111.1 ± 0.3 mg g. The biomass showed high density of strong mercury chelating groups, thus making it economically attractive. Also, the implementation of a mercury-selective electrode for continuous determination in real time is proposed; this electrode replaces techniques like atomic absorption spectroscopy, thus it can be applied to real time studies. This work therefore presents a new perspective for removing mercury(II) from contaminated water for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.10.009DOI Listing

Publication Analysis

Top Keywords

real time
8
effective mercuryii
4
mercuryii bioremoval
4
bioremoval aqueous
4
aqueous solution
4
solution electrochemical
4
electrochemical determination
4
determination work
4
work proposed
4
mercury
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!