Casimir-Polder interaction arises from the vacuum fluctuations of quantum field that depend on spacetime curvature and thus is spacetime-dependent. Here we show how to use the resonance Casimir-Polder interaction (RCPI) between two entangled atoms to detect spacetime curvature. We find that the RCPI of two static entangled atoms in the de Sitter-invariant vacuum depends on the de Sitter spacetime curvature relevant to the temperature felt by the static observer. It is characterized by a 1/L power law decay when beyond a characteristic length scale associated to the breakdown of a local inertial description of the two-atom system. However, the RCPI of the same setup embedded in a thermal bath in the Minkowski universe is temperature-independent and is always characterized by a 1/L power law decay. Therefore, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, using the distinct difference between RCPI of two entangled atoms one can in principle distinguish these two universes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059656 | PMC |
http://dx.doi.org/10.1038/srep35222 | DOI Listing |
Adv Colloid Interface Sci
January 2025
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.
The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Measuring bipartite fluctuations of a conserved charge, such as the particle number, is a powerful approach to understanding quantum systems. When the measured region has sharp corners, the bipartite fluctuation receives an additional contribution known to exhibit a universal angle dependence in 2D isotropic and uniform systems. Here we establish that, for generic lattice systems of interacting particles, the corner charge fluctuation is directly related to quantum geometry.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Ch 149, Hamburg 22761, Germany.
High-harmonic generation (HHG) is a nonlinear process in which a material sample is irradiated by intense laser pulses, causing the emission of high harmonics of incident light. HHG has historically been explained by theories employing a classical electromagnetic field, successfully capturing its spectral and temporal characteristics. However, recent research indicates that quantum-optical effects naturally exist or can be artificially induced in HHG, such as entanglement between emitted harmonics.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA.
We investigate the driven-dissipative dynamics of multilevel atomic arrays interacting via dipolar interactions at subwavelength spacings. Unlike two-level atoms in the weakly excited regime, multilevel atoms can become strongly entangled. The entanglement manifests as the growth of spin waves in the ground-state manifold and survives after turning off the drive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!