Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between and for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of being consistently mutualistic, while pronounced parasitism was observed in , indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic , while decreased in the obligate mycotrophic . Although parasitism-promoting conditions negatively affected MGD in , these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over mycorrhizal colonization was identified as a possible key factor for the outcome of competition, while environmental and edaphic conditions affecting the mutualism-parasitism continuum appeared to be of minor importance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037182PMC
http://dx.doi.org/10.3389/fpls.2016.01465DOI Listing

Publication Analysis

Top Keywords

edaphic conditions
16
competitive interactions
12
environmental edaphic
12
conditions
8
conditions promoting
8
symbiosis species
8
mycorrhizal
7
species
6
interactions
5
amf
5

Similar Publications

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

Serpentine soils are characterized by high concentrations of heavy metals (HMs) and limited essential nutrients with remarkable endemic plant diversity, yet the mechanisms enabling plant adaptation to thrive in such harsh environments remain largely unknown. Full-length 16S rRNA amplicon sequencing, coupled with physiological and functional assays, was used to explore root-associated bacterial community composition and their metabolic and ecological functions. The results revealed that serpentine plant species exhibited significantly higher metal transfer factor values compared to non-serpentine plant species, particularly evident in Bidens pilosa, Miscanthus floridulus, and Leucaena leucocephala.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on ecological speciation in the genus Linaria, exploring how their environmental niches shifted during radiative events in the western Mediterranean.
  • Using various analytical methods, the research found significant divergence in climatic and soil conditions among eight Linaria species, particularly between closely related species.
  • The findings suggest that both climatic and soil habitat isolation contributed to plant speciation in the region, aligning with adaptive radiation, while indicating that patterns of niche conservatism or divergence depend on the phylogenetic context.
View Article and Find Full Text PDF

Rhizosphere microorganisms, particularly arbuscular mycorrhizal fungi (AMF), play a vital role in enhancing sustainable maize production. However, uncertainty persist regarding the influence of climate variables and soil properties on mycorrhizal colonization (MC) of maize and the abundance of AM fungal spores in the field. This study aimed to explore the environmental factors such as site climate variables, soil physicochemical properties and topography and vegetation variable, affecting the natural MC of maize and the density of AMF spores.

View Article and Find Full Text PDF

Yield and chemical composition of Hesperozygis ringens (Benth.) Epling essential oil cultivated in different areas.

Braz J Biol

December 2024

Universidade do Vale do Taquari - Univates, Programa de Pós-Graduação em Biotecnologia, Laboratório de Botânica, Lajeado, RS, Brasil.

The essential oil (EO) of Hesperozygis ringens (Benth.) Epling, which has several proven properties, is comprised mainly of monoterpenes and sesquiterpenes, and pulegone is the major compound. However, this is an endemic and endangered species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!