Along with barley and rice, maize provides staple food for more than half of the world population. Maize ears are regularly infected with fungal pathogens of the genus, which, besides reducing yield, also taint grains with toxic metabolites. In an earlier work, we have shown that maize ears infection with single strains was detectable through volatile sensing. In nature, infection most commonly occurs with more than a single fungal strain; hence we tested how the interactions of two strains would modulate volatile emission from infected ears. For this purpose, ears of a hybrid and a dwarf maize variety were simultaneously infected with different strains of and and, the resulting volatile profiles were compared to the ones of ears infected with single strains. Disease severity, fungal biomass, and the concentration of the oxylipin 9-hydroxy octadecadienoic acid, a signaling molecule involved in plant defense, were monitored and correlated to volatile profiles. Our results demonstrate that in simultaneous infections of hybrid and dwarf maize, the most competitive fungal strains had the largest influence on the volatile profile of infected ears. In both concurrent and single inoculations, volatile profiles reflected disease severity. Additionally, the data further indicate that dwarf maize and hybrid maize might emit common (i.e., sesquiterpenoids) and specific markers upon fungal infection. Overall this suggests that volatile profiles might be a good proxy for disease severity regardless of the fungal competition taking place in maize ears. With the appropriate sensitivity and reliability, volatile sensing thus appears as a promising tool for detecting fungal infection of maize ears under field conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037238PMC
http://dx.doi.org/10.3389/fpls.2016.01460DOI Listing

Publication Analysis

Top Keywords

maize ears
20
volatile profiles
16
dwarf maize
12
disease severity
12
maize
10
ears
9
simultaneously infected
8
fungal
8
competitive fungal
8
single strains
8

Similar Publications

Laser scarecrows reduce avian corn-foraging propensity but not bout length in aviary trials.

Pest Manag Sci

January 2025

US Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Florida Field Station, Gainesville, FL, USA.

Background: Behavioral mechanisms underlying avian deterrence by lasers in sweet corn are not known, and we evaluated them in a rigorous aviary experiment. Eighteen flocks of European starlings (Sturnus vulgaris) foraged on sweet corn for several days in control and laser treated plots with ripe sweet corn while data were collected on where birds were distributed and how long birds foraged on corn. In 16 trials, fresh ears were presented on wooden sticks, and in two trials birds foraged on natural corn grown from seed.

View Article and Find Full Text PDF

Contribution of crossing over to genetic variance in maize and wheat populations.

Plant Genome

March 2025

Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA.

Crossing over breaks linkages and leads to a wider array of allele combinations. My objective was to assess the contribution of crossing over to genetic variance (V) in maize (Zea mays L.) and wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Nondestructively-measured leaf ammonia emission rates can partly reflect maize growth status.

Plant Physiol Biochem

January 2025

School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; Engineering Research Center of Environmentally-friendly and Efficient Fertilizer and Pesticide of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China. Electronic address:

A deep understanding of ammonia (NH) emissions from cropland can promote efficient crop production. To date, little is known about leaf NH emissions because of the lack of rapid detection methods. We developed a method for detecting leaf NH emissions based on portable NH sensors.

View Article and Find Full Text PDF

The contradiction between increased irrigation demand and water scarcity in arid regions has become more acute for crops as a result of global climate change. This highlights the urgent need to improve crop water use efficiency. In this study, four irrigation volumes were established for drip-irrigated maize under plastic mulch: 2145 m ha (W1), 2685 m ha (W2), 3360 m ha (W3), and 4200 m ha (W4).

View Article and Find Full Text PDF

Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects' ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize-bean intercrop with the addition of at planting, and push-pull technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!