RNA binding proteins (RBPs) control the fate and expression of a transcriptome. Despite this fundamental importance, our understanding of plant RBPs is rudimentary, being mainly derived via bioinformatic extrapolation from other kingdoms. Here, we adapted the mRNA-protein interactome capture method to investigate the RNA binding proteome in planta. From Arabidopsis thaliana etiolated seedlings, we captured more than 700 proteins, including 300 with high confidence that we have defined as the At-RBP set. Approximately 75% of these At-RBPs are bioinformatically linked with RNA biology, containing a diversity of canonical RNA binding domains (RBDs). As no prior experimental RNA binding evidence exists for the majority of these proteins, their capture now authenticates them as RBPs. Moreover, we identified protein families harboring emerging and potentially novel RBDs, including WHIRLY, LIM, ALBA, DUF1296, and YTH domain-containing proteins, the latter being homologous to animal RNA methylation readers. Other At-RBP set proteins include major signaling proteins, cytoskeleton-associated proteins, membrane transporters, and enzymes, suggesting the scope and function of RNA-protein interactions within a plant cell is much broader than previously appreciated. Therefore, our foundation data set has provided an unbiased insight into the RNA binding proteome of plants, on which future investigations into plant RBPs can be based.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5134986PMC
http://dx.doi.org/10.1105/tpc.16.00562DOI Listing

Publication Analysis

Top Keywords

rna binding
20
etiolated seedlings
8
plant rbps
8
binding proteome
8
at-rbp set
8
rna
7
proteins
7
binding
5
planta determination
4
determination mrna-binding
4

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

Detection of Putative Ligand Dissociation Pathways in Proteins Using Site-Identification by Ligand Competitive Saturation.

J Chem Inf Model

December 2024

Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, United States.

Drug efficacy often correlates better with dissociation kinetics than binding affinity alone. To study binding kinetics computationally, it is necessary to identify all of the possible ligand dissociation pathways. The site identification by ligand competitive saturation (SILCS) method involves the precomputation of a set of maps (FragMaps), which describe the free energy landscapes of typical chemical functionalities in and around a target protein or RNA.

View Article and Find Full Text PDF

Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated.

View Article and Find Full Text PDF

RNA plays important roles in the regulation of gene expression in response to environmental stimuli. , a long noncoding cis-natural antisense RNA, is a key component of regulating the response to cold temperature in . There are three mechanisms through which fine tunes the transcriptional response to cold temperatures.

View Article and Find Full Text PDF

Resynthesis of Damaged Fe-S Cluster Proteins Protects Against Oxidative Stress in the Absence of Mn-Superoxide Dismutase.

J Fungi (Basel)

November 2024

Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary.

The importance of manganese superoxide dismutase (Mn-SOD), an evolutionarily ancient metalloenzyme that maintains the integrity and function of mitochondria, was studied in oxidative stress-treated cultures. Deletion of the Mn-SOD gene () increased both the menadione sodium bisulfite (MSB)-elicited oxidative stress and the deferiprone (DFP)-induced iron limitation stress sensitivity of the strain. Moreover, DFP treatment enhanced the MSB sensitivity of both the gene deletion mutant and the reference strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!