Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging.

Circ Cardiovasc Imaging

From the Department for Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (C.v.D., E.S., L.A., D.N., P.L., C.T.S, S.K., R.R.); and Department of Information Technology and Electrical Engineering, Institute for Biomedical Engineering, University and ETH Zurich, Switzerland (C.v.D., C.T.S., S.K.).

Published: October 2016

Background: The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling.

Methods And Results: Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs.

Conclusions: Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068188PMC
http://dx.doi.org/10.1161/CIRCIMAGING.116.005018DOI Listing

Publication Analysis

Top Keywords

dilated cardiomyopathy
20
diffusion tensor
20
tensor imaging
16
patients dilated
16
left ventricular
12
magnetic resonance
8
resonance diffusion
8
cardiomyopathy relative
8
ventricular ejection
8
ejection fraction
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!