Objective: To evaluate the effect of two aging methods (mechanical cycling and autoclave) on the mechanical behavior of veneer and framework ceramic specimens with different configurations (monolithic, two and three-layers).

Methods: Three ceramics used as framework for fixed dental prostheses (YZ-Vita In-Ceram YZ; IZ-Vita In-Ceram Zirconia; AL-Vita In-Ceram AL) and two veneering porcelains (VM7 and VM9) were studied. Bar-shaped specimens were produced in three different designs: monolithic, two layers (porcelain-framework) and three layers (porcelain-framework-porcelain). Specimens were tested for three-point flexural strength at 1MPa/s in 37°C artificial saliva. Three different experimental conditions were evaluated (n=10): control; mechanical cycling (2Hz, 37°C artificial saliva); and autoclave aging (134°C, 2 bars, 5h). Bi-layered specimens were tested in both conditions: with porcelain or framework ceramic under tension. Fracture surfaces were analyzed using stereomicroscope and scanning electron microscopy. Results were statistically analyzed using Kruskal-Wallis and Student-Newman-Keuls tests.

Results: Only for AL group, mechanical cycling and autoclave aging significantly decreased the flexural strength values in comparison to the control (p<0.01). YZ, AL, VM7 and VM9 monolithic groups showed no strength degradation. For multi-layered specimens, when the porcelain layer was tested in tension (bi and tri-layers), the aging methods evaluated also had no effect on strength (p≥0.05). Total and partial failure modes were identified.

Significance: Mechanical cycling and autoclave aging protocols had no effect on the flexural strength values and failure behavior of YZ and IZ ceramic structures. Yet, AL monolithic structures showed a significant decrease in flexural strength with any of the aging methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2016.09.005DOI Listing

Publication Analysis

Top Keywords

mechanical cycling
12
aging methods
8
methods mechanical
8
mechanical behavior
8
cycling autoclave
8
framework ceramic
8
specimens tested
8
flexural strength
8
37°c artificial
8
artificial saliva
8

Similar Publications

Parametric finite element modeling of reinforced polymeric leaflets for improved durability.

J Mech Behav Biomed Mater

January 2025

School of Materials Science and Engineering, Colorado State University, 700 Meridian Ave, Fort Collins, 80523, CO, USA. Electronic address:

Hyaluronic acid-enhanced polyethylene polymeric TAVR shows excellent in vivo anti-calcific, anti-thrombotic, and in vitro hydrodynamic performance. However, during durability testing, impact wear and fatigue cause early valve failure. Heart valve durability can be improved by strengthening the leaflet with fiber reinforcement.

View Article and Find Full Text PDF

Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium.

View Article and Find Full Text PDF

While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.

View Article and Find Full Text PDF

Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier integrity, which are normally maintained by astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent cerebral ischemia and reperfusion model of stroke.

View Article and Find Full Text PDF

This work investigated the mechanical and catalytic degradation properties of FeMnCoCr-based high-entropy alloys (HEAs) with diverse compositions and porous structures fabricated via selective laser melting (SLM) additive manufacturing for wastewater treatment applications. The effects of Mn content (0, 30 at%, and 50 at%) and topological structures (gyroid, diamond, and sea urchin-inspired shell) on the compression properties and catalytic efficiency of the FeMnCoCr HEAs were discussed. The results indicated that an increase in the Mn content led to a phase structure transition that optimized mechanical properties and catalytic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!