Cryptic pockets, that is, sites on protein targets that only become apparent when drugs bind, provide a promising alternative to classical binding sites for drug development. Here, we investigate the nature and dynamical properties of cryptic sites in four pharmacologically relevant targets, while comparing the efficacy of various simulation-based approaches in discovering them. We find that the studied cryptic sites do not correspond to local minima in the computed conformational free energy landscape of the unliganded proteins. They thus promptly close in all of the molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling approaches, such as Parallel Tempering, do not improve the situation, as the entropic term does not help in the opening of the sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites. Our observed mechanism of cryptic site formation is suggestive of an interplay between two classical mechanisms: induced-fit and conformational selection. Employing this insight, we developed a novel Hamiltonian Replica Exchange-based method "SWISH" (Sampling Water Interfaces through Scaled Hamiltonians), which combined with probes resulted in a promising general approach for cryptic site discovery. We also addressed the issue of "false-positives" and propose a simple approach to distinguish them from druggable cryptic pockets. Our simulations, whose cumulative sampling time was more than 200 μs, help in clarifying the molecular mechanism of pocket formation, providing a solid basis for the choice of an efficient computational method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.6b05425 | DOI Listing |
Ecol Evol
December 2024
Platypus Conservation Initiative, Centre for Ecosystem Science, School of Biological, Earth & Environmental Sciences University of New South Wales Sydney New South Wales Australia.
Platypuses are a unique freshwater mammal native to eastern Australia. They are semi-aquatic, predominantly nocturnal, and nest in burrows dug into the banks of waterbodies. Quantifying nesting burrow characteristics is challenging due to the species' cryptic nature.
View Article and Find Full Text PDFZoological Lett
December 2024
Department of Arctic Biology, University Centre in Svalbard (UNIS), P.O. Box 156, 9171, Longyearbyen, Svalbard, Norway.
Species identification within the aphid genus Pemphigus Hartig, 1839 poses challenges due to morphological similarities and host-plant associations. Aphids of this genus generally exhibit complex life cycles involving primary hosts (poplars) and secondary (mostly unrelated herbaceous) host-plants, with some species relying solely on root-feeding generation. An example is a representative of the genus Pemphigus, trophically associated with grass roots, found in the High Arctic Svalbard archipelago.
View Article and Find Full Text PDFBioinformatics
December 2024
Department of Software Engineering, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
Motivation: Structure-based methods for detecting protein-ligand binding sites play a crucial role in various domains, from fundamental research to biomedical applications. However, current prediction methodologies often rely on holo (ligand-bound) protein conformations for training and evaluation, overlooking the significance of the apo (ligand-free) states. This oversight is particularly problematic in the case of cryptic binding sites (CBSs) where holo-based assessment yields unrealistic performance expectations.
View Article and Find Full Text PDFProtein Sci
January 2025
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
After overexpression in a suitable host, recombinant protein purification often relies on affinity (e.g., poly-histidine) and solubility-enhancing (e.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig Maximilian University Munich, Martinsried 82152, Germany.
The H3K9me3-specific histone methyltransferase SETDB1 is critical for proper regulation of developmental processes, but the underlying mechanisms are only partially understood. Here, we show that deletion of in mouse fetal liver hematopoietic stem and progenitor cells (HSPCs) results in compromised stem cell function, enhanced myeloerythroid differentiation, and impaired lymphoid development. Notably, -deficient HSPCs exhibit reduced quiescence and increased proliferation, accompanied by the acquisition of a lineage-biased transcriptional program.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!