We describe an approach for multiplexed microRNA analysis using silicon photonic microring resonators to detect cDNA reverse transcription products via a subsequent enzymatic signal enhancement strategy. Key to this method is a modified stem loop primer that facilitates downstream signal amplification via enzymatic turnover and improves the sensor signal 20-fold when compared to traditional stem loop primers. This approach facilitates targeted microRNA quantification in only 2.5 h and without requiring target amplification via the polymerase chain reaction (PCR). Primers for 7 miRNA targets were orthogonally designed to avoid cross-hybridization between capture probes. This approach was applied to the detection of total RNA from human tissues and found to display differential expression profiles consistent with literature precedent. This development holds promise as an alternative to single-plex RT-qPCR methods and more expensive RNA-seq by offering a cost-effective method to analyze targeted miRNA panels in emerging diagnostic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812356 | PMC |
http://dx.doi.org/10.1021/acs.analchem.6b03350 | DOI Listing |
Nanotechnology
January 2025
Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.
View Article and Find Full Text PDFNanotechnology
January 2025
Experimentalphysik, Saarland University, Fachrichtung 7.2, Campus E2.6, 66123 Saarbruecken, Saarbrucken, Saarland, 66123, GERMANY.
Color centers are promising single-photon emitters owing to their operation at room temperature and high photostability. In particular, using nanodiamonds as a host material is of interest for sensing and metrology. Furthermore, being a solid-state system allows for incorporation to photonic systems to tune both the emission intensity and photoluminescence spectrum and therefore adapt the individual color center to desired properties.
View Article and Find Full Text PDFAdv Mater
January 2025
Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
The evolution of display technologies is rapidly transitioning from traditional screens to advanced augmented reality (AR)/virtual reality (VR) and wearable devices, where quantum dots (QDs) serve as crucial pure-color emitters. While solution processing efficiently forms QD solids, challenges emerge in subsequent stages, such as layer deposition, etching, and solvent immersion. These issues become especially pronounced when developing diverse form factors, necessitating innovative patterning methods that are both reversible and sustainable.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
Arguably, SiC technology is the most rapidly expanding IC manufacturing technology driven mostly by the aggressive roadmap for battery electric vehicle penetration and also industrial high-voltage/high-power applications. This paper provides a comprehensive overview of the state of the art of SiC technology focusing on the challenges starting from the difficult and lengthy SiC substrate growth all the way to the complex MOSFET assembly processes. We focus on the differentiation from the established Si manufacturing processes and provide a comprehensive list of references as well as a brief description of our own research into the key manufacturing processes in this technology.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
GE HealthCare, Waukesha, WI.
Objective: Patient positioning during clinical practice can be challenging, and mispositioning leads to a change in CT number. CT number fluctuation was assessed in single-energy (SE) EID, dual-energy (DE) EID, and deep silicon photon-counting detector (PCD) CT over water-equivalent diameter (WED) with different mispositions.
Methods: A phantom containing five clinically relevant inserts (Mercury Phantom, Gammex) was scanned on a clinical EID CT and a deep silicon PCD CT prototype at vertical positions of 0, 4, 8, and 12 cm.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!