Fingolimod (1) is the first approved oral therapy for the treatment of relapsing remitting multiple sclerosis. While the phosphorylated metabolite of fingolimod was found to be a nonselective S1P receptor agonist, agonism specifically of S1P is responsible for the peripheral blood lymphopenia believed to be key to its efficacy. Identification of modulators that maintain activity on S1P while sparing activity on other S1P receptors could offer equivalent efficacy with reduced liabilities. We disclose in this paper a ligand-based drug design approach that led to the discovery of a series of potent tricyclic agonists of S1P with selectivity over S1P and were efficacious in a pharmacodynamic model of suppression of circulating lymphocytes. Compound 10 had the desired pharmacokinetic (PK) and pharmacodynamic (PD) profile and demonstrated maximal efficacy when administered orally in a rat adjuvant arthritis model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.6b01099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!