Sn-doped InO (ITO) electrodes were deposited on transparent and flexible muscovite mica. The use of mica substrate makes a high-temperature annealing process (up to 500 °C) possible. ITO/mica retains its low electric resistivity even after continuous bending of 1000 times on account of the unique layered structure of mica. When used as a transparent flexible heater, ITO/mica shows an extremely fast ramping (<15 s) up to a high temperature of over 438 °C. When used as a transparent electrode, ITO/mica permits a high-temperature annealing (450 °C) approach to fabricate flexible perovskite solar cells (PSCs) with high efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b09166DOI Listing

Publication Analysis

Top Keywords

muscovite mica
8
transparent flexible
8
transparent indium
4
indium tin
4
tin oxide
4
oxide electrodes
4
electrodes muscovite
4
mica
4
mica high-temperature-processed
4
high-temperature-processed flexible
4

Similar Publications

Rare Earth Selectivity and Electric Potentials at Mica Interfaces.

ACS Appl Mater Interfaces

January 2025

Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.

Controlling materials' composition and structure to selectively adsorb rare earth elements (REE) is critical for better separations. Understanding how local electric potentials affect REE adsorption and how they can be modified via chemical substitution is of fundamental importance. We present calculated mean inner potentials for muscovite and phlogopite micas in excellent agreement with measured values of +10.

View Article and Find Full Text PDF

Quantifying chemomechanical weakening in muscovite mica with a simple micromechanical model.

Nat Commun

November 2024

Department of Physics and Anthony J. Leggett Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL, 61801, USA.

In response to gradual nanoindentation, the surface of muscovite mica deforms by sudden stochastic nanometer-scale displacement bursts. Here, the statistics of these displacement events are interpreted using a statistical model previously used to model earthquakes to understand how chemically reactive environments alter the surface properties of this material. We show that the statistics of nanoindentation displacement bursts in muscovite mica are tuned by chemomechanical weakening in a manner similar to how the statistics of model events are tuned by a mechanical weakening parameter that describes how easily system-spanning cracks can be nucleated.

View Article and Find Full Text PDF

The anisotropic nature of charge transport through organic materials requires high control over the self-assembly of the organic materials. This is particularly so for conductive polymers, where transport occurs mainly along the polymers' backbone. Herein, we demonstrate the use of self-assembled monolayers (SAMs) to influence the self-assembly of poly(3-adamantylmethylthiophene).

View Article and Find Full Text PDF

In pursuing advanced neuromorphic applications, this study introduces the successful engineering of a flexible electronic synapse based on WO, structured as W/WO/Pt/Muscovite-Mica. This artificial synapse is designed to emulate crucial learning behaviors fundamental to in-memory computing. We systematically explore synaptic plasticity dynamics by implementing pulse measurements capturing potentiation and depression traits akin to biological synapses under flat and different bending conditions, thereby highlighting its potential suitability for flexible electronic applications.

View Article and Find Full Text PDF

The surfaces of many minerals are covered by naturally occurring cations that become partially hydrated and can be replaced by hydronium or other cations when the surface is exposed to water or an aqueous solution. These ion exchange processes are relevant to various chemical and transport phenomena, yet elucidating their microscopic details is challenging for both experiments and simulations. In this work, we make a first step in this direction by investigating the behavior of the native K+ ions at the interface between neat water and the muscovite mica (001) surface with ab-initio-based machine learning molecular dynamics and enhanced sampling simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!