Colorectal cancer (CRC) is one of most prevalent malignant diseases worldwide. Metastasis and chemo-resistance are the two prominent death-related factors of CRCs. Thus, it is urgent to understand the mechanism responsible for the chemo-resistant properties of CRC and develop new therapeutic methods. Here, we found that the expression of miR-659-3p was significantly reduced in cisplatin (CDDP)-resistant HT29 and LOVO colorectal cancer cells and in CDDP-resistant clinical colorectal cancer samples compared with respective CDDP-sensitive counterparts. Sphingosine kinase 1 (SPHK1) is a direct target of miR-659-3p in colorectal cancer cells, and it is negatively regulated by miR-659-3p. We found that anti-miR-659-3p could increase the IC50 of CDDP in parental HT29 and LOVO colorectal cancer cells; additionally, miR-659-3p mimics decreased the IC50 of CDDP in HT29/CDDP and LOVO/CDDP colorectal cancer cells. Furthermore, we showed that the miR-659-3p/SPHK1 pathway was involved in the regulation of chemotherapy responses of colorectal cancer cells in vivo. In all, our findings suggest a new mechanism involved in the regulation of the chemotherapy response of CRC and might provide new targets for CRC prevention and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043107PMC

Publication Analysis

Top Keywords

colorectal cancer
32
cancer cells
20
involved regulation
12
regulation chemotherapy
12
chemotherapy response
8
colorectal
8
cancer
8
ht29 lovo
8
lovo colorectal
8
ic50 cddp
8

Similar Publications

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

LIN28B-mediated PI3K/AKT pathway activation promotes metastasis in colorectal cancer models.

J Clin Invest

January 2025

Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America.

Colorectal cancer (CRC) remains a leading cause of cancer death due to metastatic spread. LIN28B is overexpressed in 30% of CRCs and promotes metastasis, yet its mechanisms remain unclear. In this study, we genetically modified CRC cell lines to overexpress LIN28B, resulting in enhanced PI3K/AKT pathway activation and liver metastasis in mice.

View Article and Find Full Text PDF

The multifaceted roles of aldolase A in cancer: glycolysis, cytoskeleton, translation and beyond.

Hum Cell

January 2025

Institute of Translational Medicine, Medical College, Yangzhou University, No. 136 Jiangyangzhonglu, Yangzhou, 225009, Jiangsu, China.

Cancer, a complicated disease characterized by aberrant cellular metabolism, has emerged as a formidable global health challenge. Since the discovery of abnormal aldolase A (ALDOA) expression in liver cancer for the first time, its overexpression has been identified in numerous cancers, including colorectal cancer (CRC), breast cancer (BC), cervical adenocarcinoma (CAC), non-small cell lung cancer (NSCLC), gastric cancer (GC), hepatocellular carcinoma (HCC), pancreatic cancer adenocarcinoma (PDAC), and clear cell renal cell carcinoma (ccRCC). Moreover, ALDOA overexpression promotes cancer cell proliferation, invasion, migration, and drug resistance, and is closely related to poor prognosis of patients with cancer.

View Article and Find Full Text PDF

Purpose: Proctectomy is frequently deferred at index colectomy for ulcerative colitis due to acuity or immunosuppressive treatments. The retained rectum remains symptomatic in over 50% with associated cancer risk. Management options include index or delayed proctectomy with or without restoration of continuity or surveillance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!