Hematological disorders like myelodysplastic syndrome (MDS) may arise due to cumulative dysregulation of various signalling pathways controlling proliferation, differentiation, maturation and apoptosis of bone marrow cells. This devastating bone marrow condition can be due to consequential abnormalities in haematopoiesis as well as its supportive microenvironment. Although mutations related to JAK/STAT pathway are common in myeloproliferative neoplasms, further studies are required to fully explore the myelodysplastic scenario regarding the concerned pathway. In this study, we have investigated the JAK-STAT signalling pathway which inevitably plays a crucial role in haematopoiesis. MDS was mimicked in a mouse model with an induction of ENU in adult mice. The bone marrow of the control and MDS groups of animals were subjected to a variety of tests, including cell morphology study in peripheral blood and bone marrow, cytochemistry and histochemistry of bone marrow smears, karyotyping and flowcytometric expression analysis of the phosphorylated forms of proteins like JAK1, STAT3 and STAT5 (denoted as pJAK1, pSTAT3 and pSTAT5) and the phenotypic expression of proteins like CD45 and CD71. The results revealed that the morphology of the blood and bone marrow cells were dysplastic compared to the affected blast populations of different lineages. The expression of common leucocyte antigen CD45 was less in comparison to the expression of transferrin receptor CD71 which was increased in the ENU induced MDS mouse model. Moreover, we have observed an upregulated expression of JAK1 followed by STAT5. Therefore, we can conclude that downregulation of CD45 may have helped in the upregulation of JAK-STAT signaling and CD71 expression. This aberrant signaling may be among one of the activated signaling axes that lead to affected hematopoietic lineages in Myelodysplastic syndrome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2016.10.010 | DOI Listing |
Nucleosides Nucleotides Nucleic Acids
January 2025
Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.
View Article and Find Full Text PDFJ Foot Ankle Res
March 2025
Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
Background: Midfoot pain is common but poorly understood, with radiographs often indicating no anomalies. This study aimed to describe bone, joint and soft tissue changes and to explore associations between MRI-detected abnormalities and clinical symptoms (pain and disability) in a group of adults with midfoot pain, but who were radiographically negative for osteoarthritis.
Methods: Community-based participants with midfoot pain underwent an MRI scan of one foot and scored semi-quantitatively using the Foot OsteoArthritis MRI Score (FOAMRIS).
J Biomed Mater Res B Appl Biomater
January 2025
The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
The formation of fibrocartilage in microfracture (MFX) severely limits its long-term outlook. There is consensus in the scientific community that the placement of an appropriate scaffold in the MFX defect site can promote hyaline cartilage formation and improve therapeutic benefit. Accordingly, in this work, a novel natural biomaterial-the cartilage analog (CA)-which met criteria favorable for chondrogenesis, was evaluated in vitro to determine its candidacy as a potential MFX scaffold.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Falmer, Brighton BN1 9PX, UK.
Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Hematology and Bone Marrow Transplant, National Center for Cancer Care and Research, Doha P.O. Box 3050, Qatar.
Background: Renal adverse drug reactions (ADRs) associated with tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML) are relatively rare, and there is currently no standardized protocol for their management. Therefore, this study aimed to summarize renal ADRs related to TKIs use in CML and propose an evidence-based approach to monitor and manage these ADRs.
Methods: A systematic literature review was performed to identify renal ADRs associated with TKIs in CML.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!