Nematicidal Key Precursors for the Biosynthesis of Morphological Regulatory Arthrosporols in the Nematode-Trapping Fungus Arthrobotrys oligospora.

J Agric Food Chem

State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China.

Published: October 2016

Arthrobotrys oligospora is the first recognized nematode-trapping fungus and by far the most abundant in the environment. Our recent study revealed the polyketide synthase (PKS) gene AOL_s00215g283 in A. oligospora involved in the production of many secondary metabolites and the trap formation of the fungus. Here we report that the disruption of two genes in the upstream flanking region of the gene AOL_s00215g283, AOL_s00215g281 and AOL_s00215g282, which putatively encoded one amidohydrolase and one cytochrome P450 monooxygenase, respectively, both resulted in significant nematicidal activity of the cultural broths of the mutants and loss of morphological regulatory arthrosporols. Chemical investigation revealed the huge accumulation of 6-methylsalicylic acid in the cultural broth of the mutant ΔAOL_s00215g281 and the high production of m-cresol in the mutant ΔAOL_s00215g282, respectively. Further bioassay revealed that 6-methylsalicylic acid and m-cresol displayed significant nematicidal activity toward root-knot nematodes Meloidogyne incognita with IC values of 300 and 100 μg/mL, respectively. The mutant ΔAOL_s00215g282 displayed a more complex metabolite profile than the mutant ΔAOL_s00215g281, suggesting that m-cresol was a more versatile key precursor than 6-methylsalicylic acid. These findings not only demonstrated that the gene AOL_s00215g283 encodes the 6-methylsalicylic acid synthase and the gene AOL_s00215g281 encodes the decarboxylase for 6-methylsalicylic acid but also provided evidence for the potential functions of the precursors in fungal complex biosynthetic pathways and had more implications for the establishment of efficient fungal biocontrol agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.6b03241DOI Listing

Publication Analysis

Top Keywords

6-methylsalicylic acid
20
gene aol_s00215g283
12
morphological regulatory
8
regulatory arthrosporols
8
nematode-trapping fungus
8
arthrobotrys oligospora
8
nematicidal activity
8
mutant Δaol_s00215g281
8
mutant Δaol_s00215g282
8
6-methylsalicylic
5

Similar Publications

Metabolic engineering of for high-level production of pneumocandin B.

Synth Syst Biotechnol

June 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, 430072, Wuhan, China.

Pneumocandin B (PB) is a lipohexapeptide synthesized by and serves as the precursor for the widely used antifungal drug caspofungin acetate (Cancidas®). However, the low titer of PB results in fermentation and purification costs during caspofungin production, limiting its widespread clinical application. Here, we engineered an efficient PB-producing strain of by systems metabolic engineering strategies, including multi-omics analysis and multilevel metabolic engineering.

View Article and Find Full Text PDF

Fungal secondary metabolites (SMs) have broad applications in biomedicine, biocontrol, and the food industry. In this study, whole-genome sequencing and annotation of were conducted, followed by comparative genomic analysis with 11 other species of Polyporales to examine genomic variations and secondary metabolite biosynthesis pathways. Additionally, transcriptome data were used to analyze the differential expression of polyketide synthase (PKS), terpene synthase (TPS) genes, and transcription factors (TFs) under different culture conditions.

View Article and Find Full Text PDF

Engineering a carbon source-responsive promoter for improved biosynthesis in the non-conventional yeast .

Metab Eng Commun

June 2024

Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA.

Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast , by fusing carbon-source responsive elements of the native promoter to the strong or native promoter cores.

View Article and Find Full Text PDF

Fungal polyketides are a large group of secondary metabolites, valuable due to their diverse spectrum of pharmacological activities. Polyketide biosynthesis in filamentous fungi presents some challenges: small yield and low-purity titers. To tackle these issues, we switched to the yeast , an easily cultivable heterologous host.

View Article and Find Full Text PDF

6-methylsalicylic acid (6-MSA) is a small, simple polyketide produced by a broad spectrum of fungal species. Since fungi obtained the ability to synthesize 6-MSA from bacteria through a horizontal gene transfer event, it has developed into a multipurpose metabolic hub from where numerous complex compounds are produced. The most relevant metabolite from a human perspective is the small lactone patulin as it is one of the most potent mycotoxins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!