High content image analysis of focal adhesion-dependent mechanosensitive stem cell differentiation.

Integr Biol (Camb)

Department of Bioengineering, University of California, 9500 Gilman Drive, MC 0695, La Jolla, San Diego, CA, USA. and Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA.

Published: October 2016

Human mesenchymal stem cells (hMSCs) receive differentiation cues from a number of stimuli, including extracellular matrix (ECM) stiffness. The pathways used to sense stiffness and other physical cues are just now being understood and include proteins within focal adhesions. To rapidly advance the pace of discovery for novel mechanosensitive proteins, we employed a combination of in silico and high throughput in vitro methods to analyze 47 different focal adhesion proteins for cryptic kinase binding sites. High content imaging of hMSCs treated with small interfering RNAs for the top 6 candidate proteins showed novel effects on both osteogenic and myogenic differentiation; Vinculin and SORBS1 were necessary for stiffness-mediated myogenic and osteogenic differentiation, respectively. Both of these proteins bound to MAPK1 (also known as ERK2), suggesting that it plays a context-specific role in mechanosensing for each lineage; validation for these sites was performed. This high throughput system, while specifically built to analyze stiffness-mediated stem cell differentiation, can be expanded to other physical cues to more broadly assess mechanical signaling and increase the pace of sensor discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079280PMC
http://dx.doi.org/10.1039/c6ib00076bDOI Listing

Publication Analysis

Top Keywords

high content
8
stem cell
8
cell differentiation
8
physical cues
8
high throughput
8
differentiation
5
proteins
5
high
4
content image
4
image analysis
4

Similar Publications

Background: High-temperature environment can cause acute kidney injury affecting renal filtration function. To study the mechanism of renal injury caused by heat stress through activates TLR4/NF-κB/NLRP3 signaling pathway by disrupting the filtration barrier in broiler chickens. The temperature of broilers in the TN group was maintained at 23 ± 1 °C, and the HS group temperature was maintained at 35 ± 1℃ from the age of 21 days, and the high temperature was 10 h per day, and one broiler from each replicate group at the age of 35 and 42 days was selected for blood sampling, respectively.

View Article and Find Full Text PDF

Background: Experimental and clinical studies have suggested that symbiotics might effectively manage type 2 diabetes mellitus (T2DM) by modulating the intestinal microbiota. However, these studies' limited sources, small sample sizes, and varied study designs have led to inconsistent outcomes regarding glycaemic control. This study aimed to investigate the effects of symbiotics on the anthropometric measures, glycaemic control, and lipid profiles of patients with T2DM.

View Article and Find Full Text PDF

Background: This study aimed to evaluate the potential additive effects of measuring serum interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) on enhancing the predictive value of baseline serum high-sensitivity C-reactive protein (hsCRP) levels for predicting 12-week antidepressant treatment responses in patients with depressive disorders.

Methods: Serum levels of hsCRP, IL-1β, and IL-6 were measured at baseline in 1086 outpatient participants diagnosed with depressive disorders. Participants initially received monotherapy with antidepressants for the first three weeks, followed by a naturalistic, stepwise pharmacotherapy regimen administered every three weeks up to 12 weeks.

View Article and Find Full Text PDF

Understanding of enhanced nitrate in fine particles at agricultural sites in summer with high ammonia level.

Environ Pollut

December 2024

Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea. Electronic address:

Nitrate is one of the major constituents of fine particles and has not been effectively alleviated in Northeast Asia. Field measurements of various gases and the chemical composition of fine particles were conducted at two agricultural sites (cropland and livestock) in ammonia-rich environments to understand the effect of ammonia on nitric acid-nitrate partitioning using a thermodynamic model and to suggest a possible strategy to control total nitrate (i.e.

View Article and Find Full Text PDF

Constructing a green modifier by using glyoxal-urea resin and chitosan to obtain a modified soy protein adhesive with high bonding strength and excellent water resistance.

Int J Biol Macromol

December 2024

Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:

The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!