Background: Tooth bleaching is, today, one of the most widespread cosmetic treatments in dental practice,  so it is important to determine whether it can interfere with orthodontic bonding or not.

Aim: The aim of this study was to assess the in vitro effects of 35% hydrogen peroxide bleaching agent on the shear bond strength of orthodontic brackets.

Materials And Methods: Forty-five upper bicuspids were divided into three groups (n = 15). In the control Group (C), the brackets were bonded without previous bleaching treatment. Group 1 (G1) was treated with 35% hydrogen peroxide bleaching agent 24 h before bracket bonding. Group 2 was also bleached, and the brackets were bonded after 30 days. The shear bond strength of the brackets was measured using an EMIC machine, and the results were analyzed by ANOVA.

Results: There were no statistically significant differences between the three groups (P > 0.05), with Group C showing a mean bond strength of 9.72 ± 2.63 MPa, G1 of 8.09 ± 2.63 MPa, and G2 of 11.15 ± 4.42 MPa.

Conclusion: It was possible to conclude that 35% hydrogen peroxide bleaching agent does not affect the shear strength of orthodontic brackets bonded 24 h and 30 days after bleaching.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0970-9290.191891DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
16
peroxide bleaching
16
bleaching agent
16
bond strength
16
shear bond
12
strength orthodontic
12
35% hydrogen
12
brackets bonded
12
agent shear
8
orthodontic brackets
8

Similar Publications

Purpose: Acanthamoeba species are eucaryotic protozoa found predominantly in soil and water. They cause ulceration and vision loss in the cornea (Acanthamoeba keratitis) and central nervous system (CNS) infection involving the lungs (granulomatous amoebic encephalitis). Antiparasitic drugs currently used in the treatment of infections caused by Acanthamoeba species are not effective at the desired level in some anatomical regions such as the eye and CNS.

View Article and Find Full Text PDF

Nanocatalytic medicine for treating cancer requires effective, versatile and novel tools and approaches to significantly improve the therapeutic efficiency for the interactions of (non-)enzymatic reactions. However, it is necessary to develop (non-)enzymatic nanotechnologies capable of selectively killing tumour cells without harming normal cells. Their therapeutic characteristics should be the adaption of tumours' extra- and intracellular environment to being specifically active.

View Article and Find Full Text PDF

Impact of cerium doping on the peroxidase-like activity of metal-organic frameworks.

Dalton Trans

January 2025

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.

Hydrogen peroxide, phenols, amines, aldehydes, and other substances can easily damage intracellular biomacromolecules. Although natural peroxidases can convert these harmful substances into benign ones, the high costs, poor stabilities, and stringent application conditions associated with these enzymes necessitate the exploration of artificial mimics. In this study, Ce-doped MIL-101(Fe)-NH and MIL-101(Fe)-NO were synthesized with varying compositions a solvothermal method.

View Article and Find Full Text PDF

A smart cascade theranostic prodrug system activated by hydrogen peroxide for podophyllotoxin delivery.

J Mater Chem B

January 2025

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.

The construction of selectively activated prodrugs serves as a crucial strategy for reducing the adverse effects associated with disease treatment. Cascade self-assembled visual prodrugs have been applied to the construction of selective activated prodrugs with low background interference and fluorescence. In this work, we rationally designed an anticancer theranostic prodrug (CM-PPT) consisting of an anticancer drug podophyllotoxin, a fluorescent dye precursor, and an HO trigger boronate ester group, which could be activated by HO oxidation, thereby releasing active anticancer molecules and forming fluorescent fragments concurrently.

View Article and Find Full Text PDF

Potential Antioxidant Effects of Common Omani Ethnobotanical Plants.

Prev Nutr Food Sci

December 2024

Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman.

Phytonutrients (e.g., phenolic compounds and flavonoids) are secondary plant metabolites that play an important role in the defense against pathogens and protection from oxidative injury because of their potential ability to neutralize reactive oxygen species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!