Objective: HLA-B27 is associated with the inflammatory spondyloarthritides (SpA), although subtypes HLA-B*27:06 and HLA-B*27:09 are not. These subtypes differ from the HLA-B*27:05 disease-associated allele primarily at residues 114 and 116 of the heavy chain, part of the F pocket of the antigen-binding groove. Dimerization of HLA-B27 during assembly has been implicated in disease onset. The purpose of this study was to investigate the factors that influence differences in dimerization between disease-associated and non-disease-associated HLA-B27 alleles.
Methods: HLA-B*27:05 and mutants resembling the HLA-B*27:06 and 09 subtypes were expressed in the rat C58 T cell line, the human CEM T cell line and its calnexin-deficient variant CEM.NKR. Immunoprecipitation, pulse-chase experiments, flow cytometry, and immunoblotting were performed to study the assembly kinetics, heavy-chain dimerization, and chaperone associations.
Results: By expressing HLA-B*27:05, 06-like, and 09 alleles on a restrictive rat transporter associated with antigen processing background, we demonstrate that a tyrosine expressed at p116, either alone or together with an aspartic acid residue at p114, inhibited HLA-B27 dimerization and increased the assembly rate. F-pocket residues altered the associations with chaperones of the early major histocompatibility complex class I folding pathway. Calnexin was demonstrated to participate in endoplasmic reticulum (ER) stress-mediated degradation of dimers, whereas the oxidoreductase ERp57 does not appear to influence dimerization.
Conclusion: Residues within the F pocket of the peptide-binding groove, which differ between disease-associated and non-disease-associated HLA-B27 subtypes, can influence the assembly process and heavy-chain dimerization, events which have been linked to the initiation of disease pathogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/art.39948 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!